Outline

1. (Long) Introduction
2. Randomized Polynomials (w/applications to round-efficient MPC)
3. Randomized Encodings w/applications to NC^0 Cryptography
4. Constant Input Locality
5. Computational Randomized Encodings (w/applications)
6. NC^0 Linear Stretch PRG (w/applications)
Till now we considered only NC^0 functions…

$\text{NC}^0 =$ const. depth circuits with bounded fan-in

$=$ each output bit depends on $O(1)$ input bits

Q: Can cryptographic primitives be realized by functions in which each input bit affects a constant number of output bits?
Motivation I: Avalanche Property

Confusion/Diffusion, Avalanche [Shannon 49, Feistel 73]:

input-output dependencies of a block cipher should be “complex”

“The important fact is that all output digits have potentially become very involved functions of all input digits” [Feistel 73]

Easily justified in block ciphers (or pseudorandom functions/permutations).

Is it also true for other primitives?
Motivation II: Fast Crypto Hardware

Functions of **const. output locality** & **input locality**

\[\text{NC}^0 \cap \text{NC}^0 \]

Circuits of **const. depth**, **const. fan-in**, **const. fan-out**

Depth = O(1)
Motivation III: Complexity Theory

Bounded-occurrence k-Constraint Satisfaction Problem

- $x_1 + x_3 \cdot x_5 = 0$
- $x_2 \cdot x_3 \cdot x_4 = 1$
- ...$x_2 + x_3 + x_4 = 1$
- List of constraints over n variables x_1, \ldots, x_n
- Each constraint involves $k=O(1)$ variables
- Each variable appears in $O(1)$ constraints

Goal: Find a satisfying assignment

Fact:
- Cook-Levin Theorem [C71,L73]: NP-hard
- [C71]: Still NP-hard
- PCP Theorem [ALMSS, AS 92]: NP-hard to approximate
- [PY88]: Still NP-hard to approximate
- OWF in NC0 [AIK 04]: “Cryptographically-hard”
- OWF in NC$^0 \cap$ CN0 ⇒ Still “Cryptographically-hard”? YES
Previous Work

- [Goldreich 00] **Heuristic OWF in NC^0 \cap CN^0**
- [Mossel Shpilka Trevisan 03] **Heuristic PRG in NC^0 \cap CN^0**
- [AIK 04] Crypto in CN^0 under standard assumptions?
 - Primitives in NC^1 from standard assumptions (e.g., factoring, DLOG, lattices)
 \[\Rightarrow \text{OWFs, PRGs, Encryption, Signatures, Hash… in NC^0 from factoring} \]
- [AIK 06] **Linear PRG in NC^0 \cap CN^0 from Assumption of [Alekhnovich 03]**

[Diagram]

- Factoring
- Rand linear code
- McEliece
- Alekhnovich’s assumption
- Heuristic construction

[Most prims] PRG

OWF

PRG

CN^0

NC^0
Main Result

A characterization of crypto tasks computable in CN^0

Possible in $\text{CN}^0 \cap \text{NC}^0$

- One-Way Functions*
- Pseudorandom Generators *
- Commitment Schemes*
- Semantically-Secure Encryption (symmetric*, public-key**)

Impossible in CN^0

- Message Authentication Codes
- Signatures
- Non-Malleable Encryption (symmetric, public-key)

* If hard to decode random binary linear code / learn parity w/ noise
** If hard to break McEliece cryptosystem
Previous Work

- [Goldreich 00] **Heuristic OWF** in $\text{NC}^0 \cap \text{CN}^0$
- [Mossel Shpilka Trevisan 03] Heuristic **PRG** in $\text{NC}^0 \cap \text{CN}^0$
- [AIK 04]
 - Primitives in NC^1 from standard assumptions (e.g., factoring, DLOG, lattices)
 \Rightarrow **OWFs, PRGs, Encryption, Signatures, Hash…** in NC^0 from factoring
- [AIK 06] **Linear PRG** in $\text{NC}^0 \cap \text{CN}^0$ from Assumption of [Alekhnovich 03]

Crypto in CN^0 under standard assumptions?

Diagram:
- **Factoring**
- **Rand linear code**
- **McEliece**
- **Alekhnovich’s assumption**
- **Heuristic construction**

NC^0

- **OWF**
- **PRG**
- **Com**
- **PK Enc**

CN^0
Positive Results

Proof Outline:
- Use the randomized encoding paradigm
- **New Construction:**
 - encoding in CN^0 for functions with “nice algebraic structure”
- **Assumption:** Hardness of decoding random linear code / McEliece
- **Assumption \Rightarrow** crypto primitives with “nice algebraic structure”
Encoding in CN⁰ – Toy Example

f(x) = (x₁ + x₂, x₁ + x₃, x₁ + x₄, x₁ + x₅)

Goal: Reduce locality of x₁ without increasing locality of other vars

Attempt 1 (chain):

\[g(x) = (x₁ + x₂, -x₂ + x₃, -x₃ + x₄, -x₄ + x₅) \]

- **Deterministic encoding**!
- **Problem:** Increased the locality of other vars

Attempt 2 (replace):

\[g(x, r) = (r₁ + x₂, r₂ + x₃, r₃ + x₄, r₄ + x₅, x₁ - r₁, x₁ - r₂, x₁ - r₃, x₁ - r₄) \]

- **Problem:** Didn’t reduce the locality of x₁

Solution: Combine 1+2 (replace and chain)

\[g(x, r) = (r₁ + x₂, r₂ + x₃, r₃ + x₄, r₄ + x₅, x₁ - r₁, r₁ - r₂, r₂ - r₃, r₃ - r₄) \]

- **Locality:** x₁ is 1, x₂, x₃, x₄, x₅ did not increase, rᵢ’s is 3
Encoding in CN0 – Toy Example

\[f(x) = (x_1 + x_2, \quad x_1 + x_3, \quad x_1 + x_4, \quad x_1 + x_5) \]

Goal: Reduce locality of \(x_1 \) without increasing locality of other vars

Solution: Combine 1+2 (replace and chain)

\[g(x,r) = (r_1 + x_2, \quad r_2 + x_3, \quad r_3 + x_4, \quad r_4 + x_5) \]

- \(x_1-r_1, \quad r_1-r_2, \quad r_2-r_3, \quad r_3-r_4 \)

• Locality: \(x_1 \) is 1, \(x_2, x_3, x_4, x_5 \) did not increase, \(r_i \)'s is 3
Encoding in CN0 – Toy Example

\[f(x) = (x_1 + x_2, x_1 + x_3, x_1 + x_4, x_1 + x_5) \]

Goal: Reduce locality of \(x_1 \) without increasing locality of other vars

Solution: Combine 1+2 (replace and chain)

\[g(x, r) = (r_1 + x_2, r_2 + x_3, r_3 + x_4, r_4 + x_5) \]

- **Correctness:** To decode, add the corresponding entries.
- **Privacy:** \(g(x, r) \) distributed uniformly under correctness constraint.

By iterating the basic gadget for every variable \(\Rightarrow \)

Corollary: every linear function can be encoded by function w/input locality 3
Encoding in CN^0 – Generalization

• Suppose that f is given in some additive form.
 \[f(x) = (x_1x_2 + x_2x_3x_5, \quad x_1x_2 + x_2x_4x_5, \quad x_1x_2 + x_1x_3x_4, \quad x_1x_2 + x_2x_5) \]

• \(\text{rank}(x_i) = \) \# of distinct terms in which x_i appears.

• Thm. f can be encoded by g such that:
 – input locality of x_i is $\text{rank}(x_i)$
 – input locality of random inputs is at most 3.
 – output locality is not increased.

• Tightness: Some functions cannot be encoded with locality $< \text{rank}(x_i)$

\[\Rightarrow \text{Some functions cannot be encoded in } \text{CN}^0 \text{ (even w/non-efficient encoding).} \]

 – Unlike NC^0: “every f has (non-efficient) encoding in NC^0“ [AIK04]
Decoding Random Linear Code

- **Problem:** Given M, y find x
- **Params:** m, μ. E.g., $m=10n, \mu = \frac{1}{4}$.
- **Assumption:** Problem is computationally hard
- **Well studied** in Coding Theory/Learning Theory [Kearns98, BKW00, Lyu05, FGKP06]
- **Assumption does not hold** \Rightarrow major breakthrough in Coding Theory
- **Similar assumptions** in [GKL93, BFKL93, Chab94, HB01, Reg05, JW05, KS06]
• Problem has nice algebraic structure:

 linear function + some low-degree noise

• Can be used to construct primitives with low rank and low degree

 - e.g., OWF, PRG, Commitment

Decoding Random Linear Code

\[
x \in \mathbb{R}^m \\
M \in \mathbb{R}^{m \times n} \\
e \in \mathbb{R}^n \\
y = e_i \cdot r_{2i-1} \cdot r_{2i}
\]