Long-term Security through Quantum Cryptography

Dominique Unruh
University of Tartu
Mathematics of QC:
The Qubit
Polarisation of Light

- Light consists of waves
- Waves swing in a given direction (extreme simplification!)
- Direction = Polarisation
Polarising Filters

- **Polarisation filters** only let one polarisation through

 ![Diagram of polarising filter](image)

- Intensity of light is reduced
 - Only the part of the light parallel to the filter passes

Dominique Unruh Long-term security through quantum 4
Polarising Filters

- Amplitude of light multiplied with $\cos \alpha$
- $\alpha = \text{Angle between polarization & filter}$
- Intensity = Amplitude2
- Intensity of light multiplied with $(\cos \alpha)^2$
Polarising Filters

\[\cos \alpha + \sin \alpha \]

\[= \cos \alpha |\downarrow\rangle + \sin \alpha |\leftrightarrow\rangle \]

- Polarising filter is linear transformation \(\Phi \):

 \[\Phi |\leftrightarrow\rangle = 0 \]

 \[\Phi |\uparrow\rangle = |\uparrow\rangle \]
Polarising Single Photons

- Single photon has no amplitude/intensity
- It’s there or not
- Intensity = Number of photons
- What happens in a polarising filter?

\[\beta |\uparrow\rangle + \gamma |\leftrightarrow\rangle \quad \mapsto \quad \begin{cases} |\uparrow\rangle & \text{with probability } \beta^2 \\ \text{nothing} & \text{with probability } \gamma^2 \end{cases} \]
Polarising Single Photons

• General rule:
 – Compute angle and amplitude of result
 – Probability of surviving photon
 = Amplitude2 = Intensity
 – Renormalize amplitude to 1

\[\beta \vert \downarrow \rangle + \gamma \vert \leftrightarrow \rangle \]

\[\mapsto \beta \vert \downarrow \rangle \]

\[\mapsto \begin{cases} \vert \downarrow \rangle & \text{with probability } \beta^2 \\ \text{nothing} & \text{with probability } 1 - \beta^2 = \gamma^2 \end{cases} \]
The Qubit

- Polarisation is example of qubit
- Other examples:
 - Atom is in excited state or not
 - Which way information in beam splitter
 - Any superposition of two possibilities (cats?)
Mathematics of QC: Larger Systems
Recap: One Qubit \(n \) Qubits

- **State:** Complex linear combination (length 1) of basis vectors \(|0\rangle \) and \(|1\rangle \)
 \(|x\rangle \) for each bitstring \(x \)
 (Dimension: \(2^n \))

- **Operations:** Linear, length-preserving ops on the state (= unitary ops)
Recap: Measurements on One Qubit

- Describing the measurement (of $|\Phi\rangle$):
 - Two orthogonal vectors $|\Psi_0\rangle$ and $|\Psi_1\rangle$ (polarization directions)
 - Many orthogonal subspaces V_i

- Probability of outcome i:
 - Project $|\Phi\rangle$ onto $|\Psi_i\rangle$ onto V_i \rightarrow $|\Phi\rangle$
 - Prob = Square of length of $|\Phi\rangle$

- Post-measurement-state: $|\Phi\rangle$ (normalized)
Quantum Mechanics are “simple”

- The last two slides capture the essence of quantum mechanics
- Mathematically simple model \rightarrow Nice
- But: Many strange consequences and deep results
Example: Bell pairs

- Consider the state $|\Phi\rangle := (|00\rangle + |11\rangle) / \sqrt{2}$ (superpos. between two 0-bits and two 1-bits)
- We measure whether the first bit is 0.
- $V_{yes} = [|00\rangle, |01\rangle]$, $V_{no} = [|10\rangle, |11\rangle]$
- Project $|\Phi\rangle$ onto V_{yes}: $|00\rangle / \sqrt{2}$
- Length: $1/\sqrt{2} \Rightarrow$ Probability(yes) = $1/2$
- Post-measurement-state: $|00\rangle$
Example: Bell pairs (II)

- Post-measurement-state: $|00\rangle$
- Measuring second bit: yields 0 with prob. 1

- When measuring the two bits in a Bell pair: Result is random, but the same!
- Even if the bits are in different places \rightarrow Non-local behavior
- The bits are “entangled”
Example: Bell pairs (III)

- Remember: A single qubit can be measured in different “directions”

- $|0\rangle$, $|1\rangle$ is the so-called “computational basis”

 \[
 |0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\
 |1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}
 \]

- $|+\rangle$, $|\rightarrow\rangle$ is the so-called “diagonal basis”
Bell pairs (IV)

- Measuring Bell pair in diagonal basis also leads to same result on both bits

- Either ++ or --

- Both qubits give the same answer when asked the same question