Time-space trade-offs in proof complexity
Lecture 4

Jakob Nordström

KTH Royal Institute of Technology

17th Estonian Winter School in Computer Science
Palmse, Estonia
February 26 – March 2, 2012
Agenda for Final Lecture

- Finish proof of polynomial calculus space lower bound
- First spend quite some time recalling definitions and approach
- Then do proof modulo key technical result: Locality lemma
- Finally prove Locality lemma
- Wrap up course with some concluding remarks (if we’re not desperately out of time)
Polynomial Calculus Resolution (PCR)

- Last time started studying polynomial calculus (PC)
- Annoying encoding problems led to introducing special variables for negated literals — polynomial calculus resolution (PCR)
- Axiom clauses of F interpreted as multilinear polynomials over variables x, y, z, \ldots and (formally independent) $\overline{x}, \overline{y}, \overline{z}, \ldots$
- “Being true” corresponds to “evaluating to zero,” so natural to flip convention and think of 0 as true and 1 as false
- Example: clause $x \lor y \lor \overline{z}$ gets translated to monomial $xy\overline{z}$
- To get unique representation, write polynomials as sums of monomials
- Prove F unsatisfiable by deriving 1 from monomials encoding axioms
Polynomial Calculus Resolution: Inference Rules

Lines in PCR refutation: multivariate polynomials $p \in \mathbb{F}[x, \overline{x}, y, \overline{y}, z, \overline{z}, \ldots]$ for some fixed field \mathbb{F} (typically finite)

Derivation rules ($\alpha, \beta \in \mathbb{F}$, $p \in \mathbb{F}[x, \overline{x}, y, \overline{y}, z, \overline{z}, \ldots]$, x any variable):

Boolean axioms

\[
\frac{x^2 - x}{x^2 - x}
\]

Complementarity axioms

\[
\frac{x + \overline{x} - 1}{x + \overline{x} - 1}
\]

Linear combination

\[
\frac{p + q}{\alpha p + \beta q}
\]

Multiplication

\[
\frac{p}{xp}
\]

PCR-refutation ends when 1 is derived

All polynomials multilinear w.l.o.g. (follows from Boolean axioms)
PCR measures we cared about yesterday (and still care about today):

- **Size**
 Total \# monomials in the refutation counted with repetitions
 (Analogue of length in resolution)

- **(Monomial) space**
 Maximal \# monomials in any configuration counted with repetitions
 (Analogue of clause space in resolution)

In the best of worlds we want to:

- Prove upper bounds for PC (no variables $\overline{x}, \overline{y}, \overline{z}, \ldots$)
- Prove (matching) lower bounds for PCR
\(N \) = size of formula

Size: at most \(\exp(O(N)) \) for PC for \(k \)-CNF formulas [Filmus et al. ’12]

Matching lower bounds for PCR up to constant factors in exponent e.g. [Alekhnovich & Razborov ’01]

Space: at most \(O(N) \) for PC for \(k \)-CNF formulas [Filmus et al. ’12]

No matching lower bounds!
Currently best bounds \(\Omega\left(\frac{3}{\sqrt{N}}\right) \) (for PC and PCR)

- Space lower bounds for wide formulas in [Alekhnovich et al. ’00]
- Only recently shown for \(k \)-CNF formulas

For number of reasons (some of which we briefly mentioned), prefer \(k \)-CNF formulas
PCR Space Lower Bounds for k-CNFs

Today, would like to prove first space lower bound for k-CNFs in polynomial calculus:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are k-CNF formulas F_N of size N s.t. $Sp_{\mathsf{PCR}}(F_N \vdash \bot) = \Omega\left(\sqrt[3]{N}\right)$

Actually, will prove slightly weaker result:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are CNF formulas F_N of size N with clauses of width $O(\log N)$ s.t. $Sp_{\mathsf{PCR}}(F_N \vdash \bot) = \Omega\left(\sqrt[3]{N / \log N}\right)$

(But all key ingredients will be there in proofs)
Today, would like to prove first space lower bound for k-CNFs in polynomial calculus:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are k-CNF formulas F_N of size N s.t. $S_{p_{PCR}}(F_N \vdash \bot) = \Omega(3\sqrt[3]{N})$

Actually, will prove slightly weaker result:

Theorem (Filmus, Lauria, Nordström, Thapen & Zewi ’12)

There are CNF formulas F_N of size N with clauses of width $O(\log N)$ s.t. $S_{p_{PCR}}(F_N \vdash \bot) = \Omega(3\sqrt[3]{N}/\log N)$

(But all key ingredients will be there in proofs)
Bitwise Pigeonhole Principle Formula $BPHP^m_n$

$$x^b = \begin{cases} x & \text{if } b = 0 \\ \overline{x} & \text{if } b = 1 \end{cases} \quad (x^b \text{ is true if and only if } x = b)$$

$$[0, j) = \{0, 1, \ldots, j - 1\} \quad (\text{will index pigeons and holes starting from 0})$$

$$n = 2^\ell \quad (\text{only consider even powers of 2 for } \# \text{ holes})$$

Variables $x[p, i]$ for each $p \in [0, m)$ and $i \in [0, \ell)$

Pigeon p sent to hole $x[p, \ell - 1] \cdots x[p, 1]x[p, 0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell - 1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p, q, h) = \bigvee_{i=0}^{\ell - 1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell - 1} x[q, i]^{1-h_i}$$

"Have $m > n$ integers between 0 and $n - 1$ and they’re all distinct"
Bitwise Pigeonhole Principle Formula $BPHP^m_n$

$$x^b = \begin{cases} x & \text{if } b = 0 \\ \overline{x} & \text{if } b = 1 \end{cases}$$

(x^b is true if and only if $x = b$)

$$[0, j) = \{0, 1, \ldots, j - 1\}$$

(will index pigeons and holes starting from 0)

$$n = 2^\ell$$

(only consider even powers of 2 for \# holes)

Variables $x[p, i]$ for each $p \in [0, m)$ and $i \in [0, \ell)$

Pigeon p sent to hole $x[p, \ell - 1] \cdots x[p, 1]x[p, 0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell-1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}$$

“Have $m > n$ integers between 0 and $n - 1$ and they’re all distinct”
Bitwise Pigeonhole Principle Formula $BPHP^n_m$

$$x^b = \begin{cases}
 x & \text{if } b = 0 \\
 \overline{x} & \text{if } b = 1
\end{cases} \quad (x^b \text{ is true if and only if } x = b)$$

$$[0, j) = \{0, 1, \ldots, j - 1\} \quad \text{(will index pigeons and holes starting from 0)}$$

$$n = 2^\ell \quad \text{(only consider even powers of 2 for \# holes)}$$

Variables $x[p, i]$ for each $p \in [0, m)$ and $i \in [0, \ell)$

Pigeon p sent to hole $x[p, \ell - 1] \cdots x[p, 1]x[p, 0]$ (in binary encoding)

For all $p \neq q \in [0, m)$, $h = h_{\ell - 1} \cdots h_0 \in [0, n)$, hole axiom

$$H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}$$

"Have $m > n$ integers between 0 and $n - 1$ and they’re all distinct"
Outline of Proof of PCR Space Lower Bound

Theorem

\[Sp_{PCR}(BPHP_n^m \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(Sp(\pi) \leq n/8 \), construct “auxiliary configurations” \(A_0, A_1, \ldots, A_\tau \) such that

- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \rightsquigarrow P_{t+1} \), can do update \(A_t \rightsquigarrow A_{t+1} \) if \(Sp(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem

\[Sp_{PCR}(BPHP_n^m \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(Sp(\pi) \leq n/8 \), construct "auxiliary configurations" \(A_0, A_1, \ldots, A_\tau \) such that

- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \sim P_{t+1} \), can do update \(A_t \sim A_{t+1} \) if \(Sp(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem

$$Sp_{PCR}(BPHP^m_n \vdash \bot) > n/8$$

Proof method: For $$\pi = \{P_0, P_1, \ldots, P_\tau\}$$ with $$Sp(\pi) \leq n/8$$, construct “auxiliary configurations” $$A_0, A_1, \ldots, A_\tau$$ such that

- $$A_t$$ highly structured, so easier to understand than $$P_t$$
- but still gives information about $$P_t$$

Maintain invariants for $$A_t$$:

1. $$A_t$$ implies $$P_t$$ (i.e., $$A_t$$ “stronger” than $$P_t$$)
2. $$A_t$$ is satisfiable (so, in particular, $$P_t$$ also satisfiable)
3. For $$P_t \leadsto P_{t+1}$$, can do update $$A_t \leadsto A_{t+1}$$ if $$Sp(P_t) \leq n/8$$

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem
\[\text{Sp}_{PCR}(BPHP^m \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(\text{Sp}(\pi) \leq n/8 \), construct “auxiliary configurations” \(A_0, A_1, \ldots, A_\tau \) such that
- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \leadsto P_{t+1} \), can do update \(A_t \leadsto A_{t+1} \) if \(\text{Sp}(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem

\[\text{Sp}_{PCR}(BPHP^m_n \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(\text{Sp} \leq n/8 \), construct “auxiliary configurations” \(A_0, A_1, \ldots, A_\tau \) such that

- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \leadsto P_{t+1} \), can do update \(A_t \leadsto A_{t+1} \) if \(\text{Sp}(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem

\[Sp_{PCR}(BPHP^m_n \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(Sp(\pi) \leq n/8 \), construct “auxiliary configurations” \(A_0, A_1, \ldots, A_\tau \) such that

- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \leadsto P_{t+1} \), can do update \(A_t \leadsto A_{t+1} \) if \(Sp(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Outline of Proof of PCR Space Lower Bound

Theorem

\[Sp_{PCR}(BPHP_n^m \vdash \bot) > n/8 \]

Proof method: For \(\pi = \{P_0, P_1, \ldots, P_\tau\} \) with \(Sp(\pi) \leq n/8 \), construct "auxiliary configurations" \(A_0, A_1, \ldots, A_\tau \) such that
- \(A_t \) highly structured, so easier to understand than \(P_t \)
- but still gives information about \(P_t \)

Maintain invariants for \(A_t \):

1. \(A_t \) implies \(P_t \) (i.e., \(A_t \) “stronger” than \(P_t \))
2. \(A_t \) is satisfiable (so, in particular, \(P_t \) also satisfiable)
3. For \(P_t \dashv \vdash P_{t+1} \), can do update \(A_t \dashv \vdash A_{t+1} \) if \(Sp(P_t) \leq n/8 \)

So small-space derivation doesn’t derive contradiction
Commitment Sets

(Disjunctive) commitment

- 2-clause of the form $C = x[p, i]^b \lor x[q, j]^c$
- Pigeons $p \neq q$ distinct
- No restrictions on $i, j \in [0, l), b, c \in \{0, 1\}$
- Domain $\text{dom}(C) = \text{set of pigeons } \{p, q\} \text{ mentioned in } C$

Commitment set

- $\mathcal{A} = \{C_1, C_2, \ldots, C_s\}$ — think of \mathcal{A}_t as 2-CNF formula
- For all $i \neq j$, $\text{dom}(C_i) \cap \text{dom}(C_j) = \emptyset$
 (i.e., all pigeons mentioned are distinct)
- $\text{dom}(\mathcal{A}) = \bigcup_{C \in \mathcal{A}} \text{dom}(C')$
- Size $|\mathcal{A}| = \text{number of commitments in } \mathcal{A}$
Commitment Sets

(Disjunctive) commitment

- 2-clause of the form $C = x[p, i]^b \lor x[q, j]^c$
- Pigeons $p \neq q$ distinct
- No restrictions on $i, j \in [0, l), b, c \in \{0, 1\}$
- Domain $\text{dom}(C) = \text{set of pigeons} \{p, q\} \text{ mentioned in } C$

Commitment set

- $\mathcal{A} = \{C_1, C_2, \ldots, C_s\}$ — think of \mathcal{A}_t as 2-CNF formula
- For all $i \neq j$, $\text{dom}(C_i) \cap \text{dom}(C_j) = \emptyset$
 (i.e., all pigeons mentioned are distinct)
- $\text{dom}(\mathcal{A}) = \bigcup_{C \in \mathcal{A}} \text{dom}(C)$
- Size $|\mathcal{A}| = \text{number of commitments in } \mathcal{A}$
Any (total) assignment α to $\text{Vars}(BPHP^m_n)$ defines function $f_\alpha : [0, m) \rightarrow [0, n)$ — in what follows, identify α and f_α

A (total) assignment α to $\text{Vars}(BPHP^m_n)$ is well-behaved over set of pigeons $S \subseteq [0, m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set A if

- α well-behaved on $\text{dom}(A)$
 (defines partial matching for all pigeons A mentions)
- α satisfies A

Definition (Entailment)

A entails PCR-configuration \mathbb{P} over well-behaved assignments if every assignment α which is well-behaved on and satisfies A must also satisfy \mathbb{P} (i.e., for every polynomial $P \in \mathbb{P}$ have $P(\alpha) = 0$)
Commitment Sets Implying PC-configurations

Any (total) assignment α to $\text{Vars}(\text{BP} \text{PHP}_m^n)$ defines function $f_\alpha : [0, m) \rightarrow [0, n)$ — in what follows, identify α and f_α

A (total) assignment α to $\text{Vars}(\text{BP} \text{PHP}_m^n)$ is well-behaved over set of pigeons $S \subseteq [0, m)$ if it sends pigeons in S to distinct holes

An assignment α is well-behaved on and satisfies commitment set \mathcal{A} if

- α well-behaved on $\text{dom}(\mathcal{A})$ (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies \mathcal{A}

Definition (Entailment)

\mathcal{A} entails PCR-configuration \mathbb{P} over well-behaved assignments if every assignment α which is well-behaved on and satisfies \mathcal{A} must also satisfy \mathbb{P} (i.e., for every polynomial $P \in \mathbb{P}$ have $P(\alpha) = 0$)
Commitment Sets Implying PC-configurations

Any (total) assignment α to $\text{Vars}(BPHP^m_n)$ defines function $f_\alpha : [0, m) \to [0, n)$ — in what follows, identify α and f_α.

A (total) assignment α to $\text{Vars}(BPHP^m_n)$ is well-behaved over set of pigeons $S \subseteq [0, m)$ if it sends pigeons in S to distinct holes.

An assignment α is well-behaved on and satisfies commitment set \mathcal{A} if

- α well-behaved on $\text{dom}(\mathcal{A})$
 (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies \mathcal{A}

Definition (Entailment)

\mathcal{A} entails PCR-configuration \mathbb{P} over well-behaved assignments if every assignment α which is well-behaved on and satisfies \mathcal{A} must also satisfy \mathbb{P} (i.e., for every polynomial $P \in \mathbb{P}$ have $P(\alpha) = 0$).
Commitment Sets Implying PC-configurations

Any (total) assignment α to $\text{Vars}(BPHP^m_n)$ defines function $f_\alpha : [0, m) \rightarrow [0, n)$ — in what follows, identify α and f_α

A (total) assignment α to $\text{Vars}(BPHP^m_n)$ is well-behaved over set of pigeons $S \subseteq [0, m)$ if it sends pigeons in S to distinct holes.

An assignment α is well-behaved on and satisfies commitment set \mathcal{A} if

- α well-behaved on $\text{dom}(\mathcal{A})$
 (defines partial matching for all pigeons \mathcal{A} mentions)
- α satisfies \mathcal{A}

Definition (Entailment)

\mathcal{A} entails PCR-configuration \mathbb{P} over well-behaved assignments if every assignment α which is well-behaved on and satisfies \mathcal{A} must also satisfy \mathbb{P} (i.e., for every polynomial $P \in \mathbb{P}$ have $P(\alpha) = 0$)
Proof of Space Lower Bound for PCR

Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:
- A_t entails P_t over well-behaved assignments
- $|A_t| \leq 2 \cdot S_P(P_t)$

Proof is by case analysis over derivation step $P_t \leadsto P_{t+1}$:
- Download of polynomial encoding
 - Boolean or Complementarity axiom
 - axiom clause $H(p, q, h)$ of $BPHP_n^m$
- Inference of polynomial Q from P_t
- Erasure of polynomial $Q \in P_t$
Proof of Space Lower Bound for PCR

Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:
- A_t entails P_t over well-behaved assignments
- $|A_t| \leq 2 \cdot Sp(P_t)$

Proof is by case analysis over derivation step $P_t \leadsto P_{t+1}$:

1. Download of polynomial encoding
2. Boolean or Complementarity axiom
3. Axiom clause $H(p, q, h)$ of $BPHP_n^m$
4. Inference of polynomial Q from P_t
5. Erasure of polynomial $Q \in P_t$
Fact: Any commitment set A_t satisfiable by well-behaved assignment (requires a proof; assume it for now)

Proof invariants:
- A_t entails P_t over well-behaved assignments
- $|A_t| \leq 2 \cdot Sp(P_t)$

Proof is by case analysis over derivation step $P_t \rightsquigarrow P_{t+1}$:
- Download of polynomial encoding
 - Boolean or Complementarity axiom
 - axiom clause $H(p, q, h)$ of $BPHP^n_m$
- Inference of polynomial Q from P_t
- Erasure of polynomial $Q \in P_t$
Case 1: Download

Complementarity axiom \(x + \overline{x} - 1\) or **Boolean axiom** \(x^2 - x\):

Set \(\mathcal{A}_{t+1} = \mathcal{A}_t\)

Hole axiom

\[
H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}:
\]

1. \(\{p, q\} \subseteq \text{dom}(\mathcal{A}_t)\): Set \(\mathcal{A}_{t+1} = \mathcal{A}_t\); any well-behaved \(\alpha\) sends pigeons \(p\) and \(q\) to distinct holes \(\Rightarrow\) satisfies \(H(p, q, h)\)

2. \(\{p, q\} \cap \text{dom}(\mathcal{A}_t) = \emptyset\): Set \(\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}\) for
 \[
 C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0}:
 \]

3. \(p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)\): Pick “dummy” \(p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}\);
 let \(C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^0\); set \(\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}\).

Well-behaved \(\alpha\) gives \(p\) and \(q\) distinct holes \(\Rightarrow\) satisfies \(H(p, q, h)\)

Space increases by \(\geq 1\) and never add more than \(1 < 2\) commitments \(\Rightarrow\)

\[|\mathcal{A}_{t+1}| \leq 2 \cdot Sp(\mathbb{P}_{t+1})\]
Case 1: Download

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$:
Set $A_{t+1} = A_t$

Hole axiom $H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}$:

1. $\{p, q\} \subseteq \text{dom}(A_t)$: Set $A_{t+1} = A_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies $H(p, q, h)$

2. $\{p, q\} \cap \text{dom}(A_t) = \emptyset$: Set $A_{t+1} = A_t \cup \{C\}$ for $C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0}$

3. $p \in \text{dom}(A_t), q \notin \text{dom}(A_t)$: Pick “dummy” $p^* \notin \text{dom}(A_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^0$; set $A_{t+1} = A_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies $H(p, q, h)$

Space increases by ≥ 1 and never add more than $1 < 2$ commitments $\Rightarrow |A_{t+1}| \leq 2 \cdot Sp(\mathbb{P}_{t+1})$
Case 1: Download

Complementarity axiom \(x + \bar{x} - 1 \) or Boolean axiom \(x^2 - x \):
Set \(\mathcal{A}_{t+1} = \mathcal{A}_t \)

Hole axiom \(H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i} \):

1. \(\{p, q\} \subseteq \text{dom}(\mathcal{A}_t) \): Set \(\mathcal{A}_{t+1} = \mathcal{A}_t \); any well-behaved \(\alpha \) sends pigeons \(p \) and \(q \) to distinct holes \(\Rightarrow \) satisfies \(H(p, q, h) \)

2. \(\{p, q\} \cap \text{dom}(\mathcal{A}_t) = \emptyset \): Set \(\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\} \) for
 \(C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0} \)

3. \(p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t) \): Pick “dummy” \(p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\} \);
 let \(C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^{0} \); set \(\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\} \).
 Well-behaved \(\alpha \) gives \(p \) and \(q \) distinct holes \(\Rightarrow \) satisfies \(H(p, q, h) \)

Space increases by \(\geq 1 \) and never add more than \(1 < 2 \) commitments \(\Rightarrow \)
\(|\mathcal{A}_{t+1}| \leq 2 \cdot Sp(P_{t+1}) \)
Case 1: Download

Complementarity axiom $x + \bar{x} - 1$ or Boolean axiom $x^2 - x$:
Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}$:

1. $\{p, q\} \subseteq \text{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \Rightarrow satisfies $H(p, q, h)$

2. $\{p, q\} \cap \text{dom}(\mathcal{A}_t) = \emptyset$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$ for $C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0}$

3. $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick “dummy” $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \Rightarrow satisfies $H(p, q, h)$

Space increases by ≥ 1 and never add more than $1 < 2$ commitments $\Rightarrow |\mathcal{A}_{t+1}| \leq 2 \cdot Sp(\mathbb{P}_{t+1})$
Case 1: Download

Complementarity axiom \(x + \overline{x} - 1 \) or **Boolean axiom** \(x^2 - x \):
Set \(A_{t+1} = A_t \)

Hole axiom \(H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i} : \)

1. \(\{p, q\} \subseteq \text{dom}(A_t) \): Set \(A_{t+1} = A_t \); any well-behaved \(\alpha \) sends pigeons \(p \) and \(q \) to distinct holes \(\Rightarrow \) satisfies \(H(p, q, h) \)

2. \(\{p, q\} \cap \text{dom}(A_t) = \emptyset \): Set \(A_{t+1} = A_t \cup \{C\} \) for \(C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0} \)

3. \(p \in \text{dom}(A_t), q \notin \text{dom}(A_t) \): Pick \(\text{“dummy” } p^* \notin \text{dom}(A_t) \cup \{q\}; \) let \(C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^{1-h_0} \); set \(A_{t+1} = A_t \cup \{C\} \).
 Well-behaved \(\alpha \) gives \(p \) and \(q \) distinct holes \(\Rightarrow \) satisfies \(H(p, q, h) \)

Space increases by \(\geq 1 \) and never add more than \(1 < 2 \) commitments \(\Rightarrow \)
\(|A_{t+1}| \leq 2 \cdot Sp(\mathbb{P}_{t+1}) \)
Case 1: Download

Complementarity axiom $x + \overline{x} - 1$ or Boolean axiom $x^2 - x$:
Set $\mathcal{A}_{t+1} = \mathcal{A}_t$

Hole axiom $H(p, q, h) = \bigvee_{i=0}^{\ell-1} x[p, i]^{1-h_i} \lor \bigvee_{i=0}^{\ell-1} x[q, i]^{1-h_i}$:

1. $\{p, q\} \subseteq \text{dom}(\mathcal{A}_t)$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t$; any well-behaved α sends pigeons p and q to distinct holes \implies satisfies $H(p, q, h)$

2. $\{p, q\} \cap \text{dom}(\mathcal{A}_t) = \emptyset$: Set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$ for $C = x[p, 0]^{1-h_0} \lor x[q, 0]^{1-h_0}$

3. $p \in \text{dom}(\mathcal{A}_t), q \notin \text{dom}(\mathcal{A}_t)$: Pick “dummy” $p^* \notin \text{dom}(\mathcal{A}_t) \cup \{q\}$; let $C = x[q, 0]^{1-h_0} \lor x[p^*, 0]^0$; set $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{C\}$. Well-behaved α gives p and q distinct holes \implies satisfies $H(p, q, h)$

Space increases by ≥ 1 and never add more than $1 < 2$ commitments \implies $|\mathcal{A}_{t+1}| \leq 2 \cdot Sp(P_{t+1})$
Case 2: Inference

- $P_{t+1} = P_t \cup \{Q\}$ for polynomial Q derived from P
- Set $A_{t+1} = A_t$
- PCR is sound \Rightarrow Q implied by P_t
- I.e., if for all $P \in P_t$ have that $P(\alpha) = 0$, then $Q(\alpha) = 0$ also holds
- All well-behaved α satisfying $A_{t+1} = A_t$ must satisfy P_t by the induction hypothesis and hence also Q, so all of P_{t+1} is satisfied
- Space increases but size of commitment set unchanged \Rightarrow $|A_{t+1}| \leq 2 \cdot Sp(P_{t+1})$
Case 3: Erasure

- $P_{t+1} = P_t \setminus \{Q\}$ for $Q \in P_t$

- Know A_t entails $P_{t+1} \subseteq P_t$

- But $|A_t|$ may be far too large if Q contains lots of monomials

- Need to find smaller commitment set that still entails P_{t+1}
 (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- A entails P over well-behaved assignments

Then \exists commitment set B of size $|B| \leq 2 \cdot Sp(P)$ s.t. B entails P over well-behaved assignments
Case 3: Erasure

- $P_{t+1} = P_t \setminus \{Q\}$ for $Q \in P_t$
- Know A_t entails $P_{t+1} \subseteq P_t$

- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails P_{t+1}
 (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- A entails P over well-behaved assignments

Then \exists commitment set B of size $|B| \leq 2 \cdot Sp(P)$ s.t. B entails P over well-behaved assignments
Case 3: Erasure

- $P_{t+1} = P_t \setminus \{Q\}$ for $Q \in P_t$
- Know A_t entails $P_{t+1} \subseteq P_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
 - Need to find smaller commitment set that still entails P_{t+1}
 (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- A entails P over well-behaved assignments

Then \exists commitment set B of size $|B| \leq 2 \cdot Sp(P)$ s.t. B entails P over well-behaved assignments
Case 3: Erasure

- $\mathbb{P}_{t+1} = \mathbb{P}_t \setminus \{Q\}$ for $Q \in \mathbb{P}_t$
- Know A_t entails $\mathbb{P}_{t+1} \subseteq \mathbb{P}_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails \mathbb{P}_{t+1}
 (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- \mathbb{P} PCR-configuration
- A entails \mathbb{P} over well-behaved assignments

Then \exists commitment set \mathcal{B} of size $|\mathcal{B}| \leq 2 \cdot Sp(\mathbb{P})$ s.t. \mathcal{B} entails \mathbb{P} over well-behaved assignments
Case 3: Erasure

- $P_{t+1} = P_t \setminus \{Q\}$ for $Q \in P_t$
- Know A_t entails $P_{t+1} \subseteq P_t$
- But $|A_t|$ may be far too large if Q contains lots of monomials
- Need to find smaller commitment set that still entails P_{t+1}
 (Was very easy for resolution; now not clear at all what to do)

Lemma (Locality lemma for PCR)

Suppose

- A commitment set
- P PCR-configuration
- A entails P over well-behaved assignments

Then \exists commitment set B of size $|B| \leq 2 \cdot Sp(P)$ s.t. B entails P over well-behaved assignments
This completes the proof of the PCR space lower bound

... modulo two assumptions

Assumption 1: Commitment sets are satisfiable by well-behaved assignments (easy)

Assumption 2: Locality lemma takes care of erasure case (harder)

Let’s stop beating around the bush and prove Locality lemma (and get satisfiability of commitment sets for free)
A Simple But Important Technical Lemma

Lemma

Given

- any set \(S \subseteq [0, m) \), \(|S| < n/2 \),
- any assignment \(\beta \) well-behaved on \(S \),
- any literal \(x[p, i]^b \) associated to pigeon \(p \notin S \),

can modify \(\beta \) *to* \(\alpha \) *by reassigning variables associated to pigeon* \(p \) *so that* \(\alpha \) *is well-behaved on* \(S \cup \{p\} \) *and satisfies* \(x[p, i]^b \)

Proof.

- Exactly half of \(n \) holes have binary expansion with \(i \)th bit = \(b \)
- Pigeons in \(S \) use less than \(n/2 \) holes (as assigned by \(\beta \))
- Hence by counting \(\exists \) hole \(h \) not assigned to any pigeon in \(S \) and having the right value of \(i \)th bit
- Modifying \(\beta \) by sending pigeon \(p \) to hole \(h \) satisfies \(x[p, i]^b \)
A Simple But Important Technical Lemma

Lemma

Given

- any set $S \subseteq [0, m)$, $|S| < n/2$,
- any assignment β well-behaved on S,
- any literal $x[p, i]^b$ associated to pigeon $p \notin S$,

can modify β to α by reassigning variables associated to pigeon p so that α is well-behaved on $S \cup \{p\}$ and satisfies $x[p, i]^b$

Proof.

- Exactly half of n holes have binary expansion with ith bit = b
- Pigeons in S use less than $n/2$ holes (as assigned by β)
- Hence by counting \exists hole h not assigned to any pigeon in S and having the right value of ith bit
- Modifying β by sending pigeon p to hole h satisfies $x[p, i]^b$
A Simple But Important Technical Lemma

Lemma

Given

- any set \(S \subseteq [0, m) \), \(|S| < n/2\),
- any assignment \(\beta \) well-behaved on \(S \),
- any literal \(x[p, i]^b \) associated to pigeon \(p \notin S \),

can modify \(\beta \) to \(\alpha \) by reassigning variables associated to pigeon \(p \) so that \(\alpha \) is well-behaved on \(S \cup \{p\} \) and satisfies \(x[p, i]^b \)

Proof.

- Exactly half of \(n \) holes have binary expansion with \(i \)th bit = \(b \)
- Pigeons in \(S \) use less than \(n/2 \) holes (as assigned by \(\beta \))
- Hence by counting \(\exists \) hole \(h \) not assigned to any pigeon in \(S \) and having the right value of \(i \)th bit
- Modifying \(\beta \) by sending pigeon \(p \) to hole \(h \) satisfies \(x[p, i]^b \)
An Even Simpler But Even More Important Corollary

Corollary

Given

- any sets \(S, T \subseteq [0, m) \) s.t. \(S \cap T = \emptyset \) and \(|S \cup T| \leq n/2 \),
- any assignment \(\beta \) well-behaved on \(S \),
- any set \(X \) of **exactly** one literal \(x[p, i_p]^{b_p} \) for every \(p \in T \),

can modify \(\beta \) to \(\alpha \) by reassigning variables associated to pigeons in \(T \) so that \(\alpha \) is well-behaved on \(S \cup T \) and satisfies all literals in \(X \).

Proof.

Consider pigeons in \(T \) one by one and apply Lemma.

In particular, proves that any commitment set \(A \) of size \(|A| \leq n/4 \) is satisfiable by well-behaved assignment

(Let \(S = \emptyset \), \(T = \text{dom}(A) \), \(X = \text{Lit}(A) \) and apply Corollary)
An Even Simpler But Even More Important Corollary

Corollary

Given

- any sets $S, T \subseteq [0, m)$ s.t. $S \cap T = \emptyset$ and $|S \cup T| \leq n/2$,
- any assignment β well-behaved on S,
- any set X of exactly one literal $x[p, i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X.

Proof.

Consider pigeons in T one by one and apply Lemma.

In particular, proves that any commitment set A of size $|A| \leq n/4$ is satisfiable by well-behaved assignment.

(LET $S = \emptyset$, $T = \text{dom}(A)$, $X = \text{Lit}(A)$ and apply Corollary)
An Even Simpler But Even More Important Corollary

Corollary

Given

- any sets $S, T \subseteq [0, m)$ s.t. $S \cap T = \emptyset$ and $|S \cup T| \leq n/2$,
- any assignment β well-behaved on S,
- any set X of exactly one literal $x[p, i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X.

Proof.

Consider pigeons in T one by one and apply Lemma

In particular, proves that any commitment set A of size $|A| \leq n/4$ is satisfiable by well-behaved assignment

(Let $S = \emptyset$, $T = \text{dom}(A)$, $X = \text{Lit}(A)$ and apply Corollary)
An Even Simpler But Even More Important Corollary

Corollary

Given

- any sets $S, T \subseteq [0, m)$ s.t. $S \cap T = \emptyset$ and $|S \cup T| \leq n/2$,
- any assignment β well-behaved on S,
- any set X of exactly one literal $x[p, i_p]^{b_p}$ for every $p \in T$,

can modify β to α by reassigning variables associated to pigeons in T so that α is well-behaved on $S \cup T$ and satisfies all literals in X.

Proof.

Consider pigeons in T one by one and apply Lemma.

In particular, proves that any commitment set \mathcal{A} of size $|\mathcal{A}| \leq n/4$ is satisfiable by well-behaved assignment

(Let $S = \emptyset$, $T = \text{dom}(\mathcal{A})$, $X = \text{Lit}(\mathcal{A})$ and apply Corollary)
Build bipartite graph $G = (U \cup V, E)$

- $U =$ distinct monomials M in \mathbb{P}
- $V =$ commitments in \mathcal{A}

- Edge between $m \in M$ and $C \in \mathcal{A}$ if
 \[\exists \text{ pigeon } p \text{ mentioned in both} \]

- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$.

- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$).

- $\forall S \subseteq M \setminus \Gamma$ by maximality
 \[|N(S) \setminus N(\Gamma)| > 2 \cdot |S| \]

- $\implies \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$.

- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall's theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U =$ distinct monomials M in \mathbb{P}
- $V =$ commitments in A
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U ∪ V, E)$
- $U =$ distinct monomials M in P
- $V =$ commitments in A

Edge between $m ∈ M$ and $C ∈ A$ **if**

$∃$ pigeon p mentioned in both

Let $Γ ⊆ M$ set of maximal size such

that $|N(Γ)| ≤ 2 \cdot |Γ|$

Assume $Γ \neq M$ (else set $B = N(Γ)$)

$∀ S ⊆ M \setminus Γ$ by maximality

$|N(S) \setminus N(Γ)| > 2 \cdot |S|$

$⇒ ∃$ matching of each $m ∈ M \setminus Γ$

to 2 distinct $C', C'' ∈ A \setminus N(Γ)$

$(Make 2 copies of each $m ∈ M \setminus Γ$

and apply Hall’s theorem)$
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- $V = \text{commitments in } \mathcal{A}$
- Edge between $m \in M$ and $C \in \mathcal{A}$ if $\exists\text{ pigeon } p \text{ mentioned in both}$
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$.
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- $V = \text{commitments in } \mathcal{A}$
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U =$ distinct monomials M in P
- $V =$ commitments in A
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
 - $\forall S \subseteq M \setminus \Gamma$ by maximality
 $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
 - $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$
 to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
 - (Make 2 copies of each $m \in M \setminus \Gamma$
 and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U =$ distinct monomials M in P
- $V =$ commitments in A
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- U = distinct monomials M in \mathbb{P}
- V = commitments in \mathcal{A}
- Edge between $m \in M$ and $C \in \mathcal{A}$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in \mathcal{A} \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } P$
- $V = \text{commitments in } A$
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U = \text{distinct monomials } M \text{ in } \mathbb{P}$
- $V = \text{commitments in } A$
- Edge between $m \in M$ and $C \in A$ if $\exists \text{pigeon } p \text{ mentioned in both}$
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U =$ distinct monomials M in P
- $V =$ commitments in A
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $\mathcal{B} = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Proof of Locality Lemma for PCR (1 / 4)

- Build bipartite graph $G = (U \cup V, E)$
- $U =$ distinct monomials M in \mathbb{P}
- $V =$ commitments in A
- Edge between $m \in M$ and $C \in A$ if \exists pigeon p mentioned in both
- Let $\Gamma \subseteq M$ set of maximal size such that $|N(\Gamma)| \leq 2 \cdot |\Gamma|$
- Assume $\Gamma \neq M$ (else set $B = N(\Gamma)$)
- $\forall S \subseteq M \setminus \Gamma$ by maximality $|N(S) \setminus N(\Gamma)| > 2 \cdot |S|$
- $\Rightarrow \exists$ matching of each $m \in M \setminus \Gamma$ to 2 distinct $C', C'' \in A \setminus N(\Gamma)$
- (Make 2 copies of each $m \in M \setminus \Gamma$ and apply Hall’s theorem)
Look at $m \in M \setminus \Gamma$

Matching commitments:

- $C' = x[p', i']^{b'} \lor x[q', j']^{c'}$
- $C'' = x[p'', i'']^{b''} \lor x[q'', j'']^{c''}$

Suppose m mentions pigeons p' and p'' so that

- $m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$

(m can also mention q' and/or q'' — don’t care)

Make new commitment $C_m = x[p', i_1]^{b_1} \lor x[p'', i_2]^{b_2}$

Let $B = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$

Done!
Proof of Locality Lemma for PCR (2 / 4)

Look at \(m \in M \setminus \Gamma \)

Matching commitments:

- \(C' = x[p', i']^{b'} \lor x[q', j']^{c'} \)
- \(C'' = x[p'', i'']^{b''} \lor x[q'', j'']^{c''} \)

Suppose \(m \) mentions pigeons \(p' \) and \(p'' \) so that

- \(m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m' \)

\((m \text{ can also mention } q' \text{ and/or } q'' \text{ — don’t care}) \)

Make new commitment \(C_m = x[p', i_1]^{b_1} \lor x[p'', i_2]^{b_2} \)

Let \(B = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\} \)

Done!
Proof of Locality Lemma for PCR (2 / 4)

Look at $m \in M \setminus \Gamma$

Matching commitments:

- $C' = x[p', i']^{b'} \lor x[q', j']^{c'}$
- $C'' = x[p'', i'']^{b''} \lor x[q'', j'']^{c''}$

Suppose m mentions pigeons p' and p'' so that

- $m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$

(m can also mention q' and/or q'' — don’t care)

Make new commitment $C_m = x[p', i_1]^{b_1} \lor x[p'', i_2]^{b_2}$

Let $B = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$

Done!
Proof of Locality Lemma for PCR (2 / 4)

Look at $m \in M \setminus \Gamma$

Matching commitments:
- $C' = x[p', i']^{b'} \lor x[q', j']^{c'}$
- $C'' = x[p'', i'']^{b''} \lor x[q'', j'']^{c''}$

Suppose m mentions pigeons p' and p'' so that
- $m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m'$

$(m$ can also mention q' and/or q'' — don’t care)

Make new commitment $C_m = x[p', i_1]^{b_1} \lor x[p'', i_2]^{b_2}$

Let $B = N(\Gamma) \cup \{C_m \mid m \in M \setminus \Gamma\}$

Done!
Look at \(m \in M \setminus \Gamma \)

Matching commitments:

- \(C' = x[p', i']^{b'} \lor x[q', j']^{c'} \)
- \(C'' = x[p'', i'']^{b''} \lor x[q'', j'']^{c''} \)

Suppose \(m \) mentions pigeons \(p' \) and \(p'' \) so that

- \(m = x[p', i_1]^{b_1} \cdot x[p'', i_2]^{b_2} \cdot m' \)
 \((m \text{ can also mention } q' \text{ and/or } q'' \text{ — don't care})\)

Make new commitment \(C_m = x[p', i_1]^{b_1} \lor x[p'', i_2]^{b_2} \)

Let \(B = N(\Gamma) \cup \{ C_m | m \in M \setminus \Gamma \} \)

Done!
Need to prove three things:

1. \(\mathcal{B} \) is a commitment set
 OK, all pigeons are distinct

2. \(\mathcal{B} \) has the right size
 OK, since \(|\mathcal{B}| \leq 2 \cdot |\mathcal{M}| \leq 2 \cdot Sp(\mathcal{P}) \)

3. \(\mathcal{B} \) entails \(\mathcal{P} \) over well-behaved assignments
 Perhaps a priori not so clear...

Prove entailment in slightly roundabout way:

Given any \(\beta \) well-behaved on and satisfying \(\mathcal{B} \), find \(\alpha \) such that

- \(\mathcal{P}(\alpha) = \mathcal{P}(\beta) \)
- \(\alpha \) well-behaved on and satisfies \(\mathcal{A} \)
Need to prove three things:

1. B is a commitment set
 OK, all pigeons are distinct

2. B has the right size
 OK, since $|B| \leq 2 \cdot |M| \leq 2 \cdot Sp(P)$

3. B entails P over well-behaved assignments
 Perhaps a priori not so clear...

Prove entailment in slightly roundabout way:
Given any β well-behaved on and satisfying B, find α such that
- $P(\alpha) = P(\beta)$
- α well-behaved on and satisfies A
Need to prove three things:

1. \(B \) is a commitment set
 OK, all pigeons are distinct

2. \(B \) has the right size
 OK, since \(|B| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P}) \)

3. \(B \) entails \(\mathbb{P} \) over well-behaved assignments
 Perhaps a priori not so clear...

Prove entailment in slightly roundabout way:
Given any \(\beta \) well-behaved on and satisfying \(B \), find \(\alpha \) such that

- \(\mathbb{P}(\alpha) = \mathbb{P}(\beta) \)
- \(\alpha \) well-behaved on and satisfies \(A \)
Proof of Locality Lemma for PCR (3 / 4)

Need to prove three things:

1. \mathcal{B} is a commitment set
 OK, all pigeons are distinct

2. \mathcal{B} has the right size
 OK, since $|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot \mathcal{S}_p(\mathbb{P})$

3. \mathcal{B} entails \mathbb{P} over well-behaved assignments
 Perhaps a priori not so clear...

Prove entailment in slightly roundabout way:
Given any β well-behaved on and satisfying \mathcal{B}, find α such that
- $\mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on and satisfies \mathcal{A}
Proof of Locality Lemma for PCR (3 / 4)

Need to prove three things:

1. \(\mathcal{B} \) is a commitment set
 OK, all pigeons are distinct

2. \(\mathcal{B} \) has the right size
 OK, since \(|\mathcal{B}| \leq 2 \cdot |M| \leq 2 \cdot Sp(\mathbb{P}) \)

3. \(\mathcal{B} \) entails \(\mathbb{P} \) over well-behaved assignments
 Perhaps a priori not so clear...

Prove entailment in slightly roundabout way:

Given any \(\beta \) well-behaved on and satisfying \(\mathcal{B} \), find \(\alpha \) such that

- \(\mathbb{P}(\alpha) = \mathbb{P}(\beta) \)
- \(\alpha \) well-behaved on and satisfies \(\mathcal{A} \)
Let $S = \text{dom}(\mathcal{B})$ and $T = \text{dom}(\mathcal{A}) \setminus \text{dom}(\mathcal{B})$.

Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } \mathcal{A}\}$

Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X

$|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$

Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.

α well-behaved on $S \cup T = \text{dom}(\mathcal{A})$

α agrees with β on pigeons outside T

α satisfies all literals in X

α and β agree on monomials in Γ
(no $m \in \Gamma$ mentions $p \in T$ by construction)

All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero
(by construction of C_m)

Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$

α well-behaved on $\text{dom}(\mathcal{A})$; satisfies $N(\Gamma) \cup X$

\Rightarrow satisfies \mathcal{A} $\Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.
Let $S = \text{dom}(B)$ and $T = \text{dom}(A) \setminus \text{dom}(B)$

Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } A\}$

Notice each $C \in A \setminus N(\Gamma)$ has ≥ 1 literal in X

$|A| \leq n/4 \Rightarrow |S \cup T| \leq n/2$

Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.

- α well-behaved on $S \cup T = \text{dom}(A)$
- α agrees with β on pigeons outside T
- α satisfies all literals in X

α and β agree on monomials in Γ
(no $m \in \Gamma$ mentions $p \in T$ by construction)

All β satisfying B must set all $m \in M \setminus \Gamma$ to zero
(by construction of C_m)

Hence α and β agree on all $m \in M \Rightarrow P(\alpha) = P(\beta)$

α well-behaved on $\text{dom}(A)$; satisfies $N(\Gamma) \cup X$
$
\Rightarrow$ satisfies $A \Rightarrow P(\alpha) = 0 \Rightarrow P(\beta) = 0$, Q.E.D.
Proof of Locality Lemma for PCR (4 / 4)

- Let $S = \text{dom}(\mathcal{B})$ and $T = \text{dom}(\mathcal{A}) \setminus \text{dom}(\mathcal{B})$
- Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } \mathcal{A}\}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- Apply Corollary to $S, T, \beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = \text{dom}(\mathcal{A})$
 - α agrees with β on pigeons outside T
 - α satisfies all literals in X
- α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow P(\alpha) = P(\beta)$
- α well-behaved on $\text{dom}(\mathcal{A})$; satisfies $N(\Gamma) \cup X \Rightarrow$ satisfies $\mathcal{A} \Rightarrow P(\alpha) = 0 \Rightarrow P(\beta) = 0$, Q.E.D.
Let $S = \text{dom}(B)$ and $T = \text{dom}(A) \setminus \text{dom}(B)$.

Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } A\}$.

Notice each $C \in A \setminus N(\Gamma)$ has ≥ 1 literal in X.

$|A| \leq n/4 \Rightarrow |S \cup T| \leq n/2$.

Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
- α well-behaved on $S \cup T = \text{dom}(A)$.
- α agrees with β on pigeons outside T.
- α satisfies all literals in X.

α and β agree on monomials in Γ (no $m \in \Gamma$ mentions $p \in T$ by construction).

All β satisfying B must set all $m \in M \setminus \Gamma$ to zero (by construction of C_m).

Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$.

α well-behaved on $\text{dom}(A)$, satisfies $N(\Gamma) \cup X \Rightarrow$ satisfies $A \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.
Proof of Locality Lemma for PCR (4 / 4)

- Let $S = \text{dom}(\mathcal{B})$ and $T = \text{dom}(\mathcal{A}) \setminus \text{dom}(\mathcal{B})$
- Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } \mathcal{A}\}$
- Notice each $C \in \mathcal{A} \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|\mathcal{A}| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = \text{dom}(\mathcal{A})$
 - α agrees with β on pigeons outside T
 - α satisfies all literals in X
- α and β agree on monomials in Γ
 (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying \mathcal{B} must set all $m \in M \setminus \Gamma$ to zero
 (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow P(\alpha) = P(\beta)$
- α well-behaved on $\text{dom}(\mathcal{A})$; satisfies $N(\Gamma) \cup X$
 \Rightarrow satisfies $\mathcal{A} \Rightarrow P(\alpha) = 0 \Rightarrow P(\beta) = 0$, Q.E.D.
Proof of Locality Lemma for PCR (4 / 4)

Let \(S = \text{dom}(B) \) and \(T = \text{dom}(A) \setminus \text{dom}(B) \).

Let \(X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } A\} \).

Notice each \(C \in A \setminus N(\Gamma) \) has \(\geq 1 \) literal in \(X \).

\(|A| \leq n/4 \Rightarrow |S \cup T| \leq n/2\)

Apply Corollary to \(S, T, \beta \Rightarrow \) assignment \(\alpha \) s.t.
 \(\quad \alpha \) well-behaved on \(S \cup T = \text{dom}(A) \)
 \(\quad \alpha \) agrees with \(\beta \) on pigeons outside \(T \)
 \(\quad \alpha \) satisfies all literals in \(X \)

\(\alpha \) and \(\beta \) agree on monomials in \(\Gamma \)
 (no \(m \in \Gamma \) mentions \(p \in T \) by construction)

All \(\beta \) satisfying \(B \) must set all \(m \in M \setminus \Gamma \) to zero
 (by construction of \(C_m \))

Hence \(\alpha \) and \(\beta \) agree on all \(m \in M \Rightarrow P(\alpha) = P(\beta) \)
\(\alpha \) well-behaved on \(\text{dom}(A) \); satisfies \(N(\Gamma) \cup X \)
\(\Rightarrow \) satisfies \(A \Rightarrow P(\alpha) = 0 \Rightarrow P(\beta) = 0 \), Q.E.D.
Let $S = \text{dom}(B)$ and $T = \text{dom}(A) \setminus \text{dom}(B)$

Let $X = \{\text{for each } p \in T \text{ the literal } x[p,i]^b \text{ in } A\}$

Notice each $C \in A \setminus N(\Gamma)$ has ≥ 1 literal in X

Since $|A| \leq n/4$ \Rightarrow $|S \cup T| \leq n/2$

Apply Corollary to S, T, $\beta \Rightarrow$ assignment α s.t.

- α well-behaved on $S \cup T = \text{dom}(A)$
- α agrees with β on pigeons outside T
- α satisfies all literals in X

α and β agree on monomials in Γ

(no $m \in \Gamma$ mentions $p \in T$ by construction)

All β satisfying B must set all $m \in M \setminus \Gamma$ to zero
(by construction of C_m)

Hence α and β agree on all $m \in M \Rightarrow P(\alpha) = P(\beta)$

α well-behaved on $\text{dom}(A)$; satisfies $N(\Gamma) \cup X$

\Rightarrow satisfies A $\Rightarrow P(\alpha) = 0$ $\Rightarrow P(\beta) = 0$, Q.E.D.
Proof of Locality Lemma for PCR (4 / 4)

- Let $S = \text{dom}(B)$ and $T = \text{dom}(A) \setminus \text{dom}(B)$
- Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } A\}$
- Notice each $C \in A \setminus N(\Gamma)$ has ≥ 1 literal in X
- $|A| \leq n/4 \Rightarrow |S \cup T| \leq n/2$
- Apply Corollary to $S, T, \beta \Rightarrow$ assignment α s.t.
 - α well-behaved on $S \cup T = \text{dom}(A)$
 - α agrees with β on pigeons outside T
 - α satisfies all literals in X
- α and β agree on monomials in Γ
 (no $m \in \Gamma$ mentions $p \in T$ by construction)
- All β satisfying B must set all $m \in M \setminus \Gamma$ to zero
 (by construction of C_m)
- Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$
- α well-behaved on $\text{dom}(A)$; satisfies $N(\Gamma) \cup X$
 \Rightarrow satisfies $A \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.
Let $S = \text{dom}(B)$ and $T = \text{dom}(A) \setminus \text{dom}(B)$

Let $X = \{\text{for each } p \in T \text{ the literal } x[p, i]^b \text{ in } A\}$

Notice each $C \in A \setminus N(\Gamma)$ has ≥ 1 literal in X

$|A| \leq n/4 \Rightarrow |S \cup T| \leq n/2$

Apply Corollary to $S, T, \beta \Rightarrow$ assignment α s.t.

α well-behaved on $S \cup T = \text{dom}(A)$

α agrees with β on pigeons outside T

α satisfies all literals in X

α and β agree on monomials in Γ
(no $m \in \Gamma$ mentions $p \in T$ by construction)

All β satisfying B must set all $m \in M \setminus \Gamma$ to zero
(by construction of C_m)

Hence α and β agree on all $m \in M \Rightarrow \mathbb{P}(\alpha) = \mathbb{P}(\beta)$

α well-behaved on $\text{dom}(A)$; satisfies $N(\Gamma) \cup X$
⇒ satisfies $A \Rightarrow \mathbb{P}(\alpha) = 0 \Rightarrow \mathbb{P}(\beta) = 0$, Q.E.D.
Summing up the Course

- Brief overview of proof complexity in general
- Introduced resolution, polynomial calculus, and cutting planes
- Surveyed state of the art for resolution and polynomial calculus
- Proved some recent results for resolution and polynomial calculus
- Many open (and accessible) problems — now go solve them!
The Theory Group at KTH

Strong research environment spanning e.g.

- complexity theory
- cryptography
- computer and network security
- formal methods
- natural language processing

Publish regularly in leading CS conferences and journals

Numerous awards and research grants in recent years

So we're expanding — and hiring!

See www.csc.kth.se/tcs for more details

Jakob Nordström (KTH)
The Theory Group at KTH (or: A Shameless Plug)

Strong research environment spanning e.g.

- complexity theory
- cryptography
- computer and network security
- formal methods
- natural language processing

Publish regularly in leading CS conferences and journals

Numerous awards and research grants in recent years

So we're expanding — and hiring!

(PhD students, postdocs, and faculty)

See www.csc.kth.se/tcs for more details
The Theory Group at KTH (or: A Shameless Plug)

- Strong research environment spanning e.g.
 - complexity theory
 - cryptography
 - computer and network security
 - formal methods
 - natural language processing

- Publish regularly in leading CS conferences and journals

- Numerous awards and research grants in recent years

- So we’re expanding — and hiring!
 (PhD students, postdocs, and faculty)

- See www.csc.kth.se/tcs for more details