Higher-Order Model Checking
I: Relating Families of Generators of Infinite Structures

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013
Beginning in the 80s, computer-aided algorithmic verification—notably model checking—of finite-state systems (e.g. hardware and communication protocols) has been a great success story in computer science.

Clarke, Emerson and Sifakis won the 2007 ACM Turing Award

“for their rôle in developing model checking into a highly effective verification technology, widely adopted in hardware and software industries”.

Focus of past decade: transfer of these techniques to software verification.
What is (software) model checking?

A Verification Problem: Given a system Sys (e.g. an OS), and a correctness property Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The model checking approach:
1. Find an abstract model M of the system Sys.
2. Describe property Spec as a formula φ of a decidable logic.
3. Exhaustively check if φ is violated by M.

Huge strides made in **verification of 1st-order imperative programs**.

Many tools: SLAM, Blast, Terminator, SatAbs, etc.

Two key techniques: State-of-the-art tools use
1. abstraction refinement techniques, as exemplified by CEGAR (Counter-Example Guided Abstraction Refinement)
2. acceleration methods such as SAT- and SMT-solvers.
Examples: OCaml, F#, Haskell, Lisp/Scheme, JavaScript, and Erlang; even C++.

Why higher-order functional languages?

1. Functional programs are succinct, less error-prone, easy to write and maintain, good for prototyping.

2. λ-expressions and closures now basic in Javascript, Perl5, Python, C# and C++0x, which are standard in web programming, hardware and embedded systems design. [TIOBE index]

3. FL support domain-specific languages and organise data parallelism well; increasingly prevalent in scientific applications and financial modelling

4. Absence of mutable variables and use of monadic structuring principles make FL attractive for concurrent programming, thanks to growth of multi-core, GPGPU processing and cloud computing.
Two standard approaches

1. **Program analysis, often type-based**
 - sound, scalable but often imprecise
 - E.g. control flow analysis (kCFA), type and effect systems
 - (region-based memory management), refinement types, resource
 - usage (sized types), etc.

2. **Theorem proving and dependent types**
 - accurate, typically requires human intervention; does not scale well
 - E.g. Coq, Agda, etc.
Model checking higher-order functional programs

By comparison with 1st-order imperative program, the model checking of higher-order programs is in its infancy. Some theoretical advances in recent years; very little tool development.

Model-checking higher-order programs is hard

1. **Infinite-state and extremely complex**: Even without recursion, higher-order programs over a finite base type are infinite-state.

 Many other sources of infinity: data structures and manipulation, control structures (with recursion), asynchronous communication, real-time and embedded systems, systems with parameters etc.

2. **Models of higher-order features as studied in semantics** – are typically too “abstract” to support any algorithmic analysis.

 A notable exception is game semantics.
Aims of the lecture course

1. We introduce a systematic approach to the algorithmics of infinite structures generated by families of higher-order generators.

2. We present an approach to verifying higher-order functional programs by reduction to the model checking of recursion schemes.

References for the course

http://www.cs.ox.ac.uk/people/luke.ong/personal/EWSCS13
A reminder: simple types

Types

\[A ::= o \mid (A \rightarrow B) \]

Every type can be written uniquely as

\[A_1 \rightarrow (A_2 \cdots \rightarrow (A_n \rightarrow o) \cdots), \quad n \geq 0 \]

often abbreviated to \(A_1 \rightarrow A_2 \cdots \rightarrow A_n \rightarrow o \).

Order of a type: measures “nestedness” on LHS of \(\rightarrow \).

\[
\begin{align*}
\text{order}(o) &= 0 \\
\text{order}(A \rightarrow B) &= \max(\text{order}(A) + 1, \text{order}(B))
\end{align*}
\]

Examples. \(\mathbb{N} \rightarrow \mathbb{N} \) and \(\mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \) both have order 1; \((\mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N} \) has order 2.

Notation. \(e : A \) means “expression \(e \) has type \(A \)”.
An order-\(n\) recursion scheme = closed ground-type term definable in order-\(n\) fragment of simply-typed \(\lambda\)-calculus with recursion and uninterpreted order-1 constant symbols.

Example: An order-1 recursion scheme. Fix ranked alphabet \(\Sigma = \{f : 2, g : 1, a : 0\}\).

\[
G : \begin{cases}
S & \rightarrow \ F \ a \\
F \ x & \rightarrow \ f \ x \ (F \ (g \ x))
\end{cases}
\]

Unfolding from the start symbol \(S\):

\[
S \rightarrow F \ a \\
\rightarrow f \ a \ (F \ (g \ a)) \\
\rightarrow f \ a \ (f \ (g \ a) \ (F \ (g \ (g \ a)))) \\
\rightarrow \cdots
\]

The (term-)tree thus generated, \([G]\), is \(f \ a \ (f \ (g \ a) \ (f \ (g \ (g \ a))(\cdots))))\).
Representing the term-tree $\llbracket G \rrbracket$ as a Σ-labelled tree

$\llbracket G \rrbracket = f \ a \ (f \ (g \ a) \ (f \ (g \ (g \ a))) (\cdots))$ is the term-tree

We view the infinite term $\llbracket G \rrbracket$ as a Σ-labelled tree, formally, a map $T \rightarrow \Sigma$, where T is a prefix-closed subset of $\{1, \cdots, m\}^*$, and m is the maximal arity of symbols in Σ.

Term-trees such as $\llbracket G \rrbracket$ are ranked and ordered.

Think of $\llbracket G \rrbracket$ as the Böhm tree of G.
Definition: Order-\(n\) (deterministic) recursion scheme \(G = (N, \Sigma, R, S)\)

Fix a set of typed variables (written as \(\varphi, x, y\) etc).

- \(N\): Typed **non-terminals** of order at most \(n\) (written as upper-case letters), including a distinguished **start symbol** \(S : o\).

- \(\Sigma\): Ranked alphabet of terminals: \(f \in \Sigma\) has **arity** \(\text{ar}(f) \geq 0\)

- \(R\): An **equation** for each non-terminal \(F : A_1 \rightarrow \cdots \rightarrow A_m \rightarrow o\) of shape

\[F \varphi_1 \cdots \varphi_m \rightarrow e \]

where the term \(e : o\) is constructed from

- terminals \(f, g, a, \) etc. from \(\Sigma\)
- variables \(\varphi_1 : A_1, \cdots, \varphi_m : A_m\) from \(\text{Var}\),
- non-terminals \(F, G, \) etc. from \(N\).

using the **application rule**: If \(s : A \rightarrow B\) and \(t : A\) then \((s \ t) : B\).
The tree generated by a recursion scheme: value tree

Given a term t, define a (finite) tree t^\bot by

$$
t^\bot := \begin{cases} f & \text{if } t \text{ is a terminal } f \\ t_1^\bot t_2^\bot & \text{if } t = t_1 t_2 \text{ and } t_1^\bot \neq \bot \\ \bot & \text{otherwise} \end{cases}
$$

We extend the flat partial order on Σ (i.e. $\bot \leq a$ for all $a \in \Sigma$) to trees by:

$$s \leq t := \forall \alpha \in \text{dom}(s). \alpha \in \text{dom}(t) \land s(\alpha) \leq t(\alpha)$$

E.g. $\bot \leq f \bot \bot \leq f \bot b \leq fab$.

For a directed set T of trees, we write $\bigsqcup T$ for the lub of T w.r.t. \leq.

Let G be a recursion scheme. We define the tree generated by G by

$$\llbracket G \rrbracket := \bigsqcup \{ t^\bot \mid S \rightarrow^* t \}$$
Order-0 examples

Infinite full binary trees

1. $\Sigma \rightarrow \{ a : 2 \}$

 $S \rightarrow a \ S \ S$

2. $\{ a : 2, b : 2 \}$

 $S \rightarrow b \ (b \ A \ A) \ (a \ A \ B)$

 $A \rightarrow a \ A \ A$

 $B \rightarrow b \ B \ B$

 Is it true that “every path has only finitely many b”? No. There is a path $b \ a \ b^\omega$.

3. $\{ a : 2, b : 2 \}$

 $S \rightarrow b \ (b \ A \ A) \ (a \ A \ A)$

 $A \rightarrow a \ A \ A$

 $B \rightarrow b \ B \ B$

 Is it true that “every path has only finitely many b”? Yes. Every path matches $b \ (b \ + \ a) \ a^\omega$.
An order-2 example

\[\Sigma = \{ f : 2, g : 1, a : 0 \}. \]

\[S : o, \quad B : (o \to o) \to (o \to o) \to o \to o, \quad F : (o \to o) \to o \]

\[G_2 : \begin{cases}
S & = F g \\
B \varphi \psi x & = \varphi(\psi x) \\
F \varphi & = f(\varphi a)(F(B \varphi \varphi)) \end{cases} \]

The generated tree, \([G_2] : \{1, 2\}^* \longrightarrow \Sigma\), is:
An Order-3 Example: Fibonacci Numbers

fib generates an infinite spine, with each member (encoded as a unary number) of the Fibonacci sequence appearing in turn as a left branch from the spine.

Non-terminals: Write Ch as a shorthand for \((o \rightarrow o) \rightarrow o \rightarrow o\)

\[
\begin{align*}
S & : o \\
Z & : Ch \\
U & : Ch \\
F & : Ch \rightarrow Ch \rightarrow o \\
P & : Ch \rightarrow Ch \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o
\end{align*}
\]

\[
\text{fib} \left\{ \begin{array}{l}
S \rightarrow F \ Z \ U \\
Z \varphi x \rightarrow x \\
U \varphi x \rightarrow \varphi x \\
F \ n_1 \ n_2 \rightarrow c \ (n_1 \ s \ z) \ (F \ n_2 \ (P \ n_1 \ n_2)) \\
P \ n_1 \ n_2 \ \varphi x \rightarrow n_1 \ \varphi \ (n_2 \ \varphi \ x)
\end{array} \right.
\]
Recapitulation

- Introduction
- **HORS** (Higher-Order Recursion Schemes) as generators of Σ-labelled trees

Synopsis of today’s lecture: 5 March 13

- HORS as generators of word languages
- Higher-order Pushdown Automata (HOPDA) as generators of word languages (and trees). Maslov Hierarchy.
- Relating the two families of generators. Safe Lambda Calculus.
- Monadic second-order (MSO) logic of Σ-labelled trees
- Model checking trees against MSO formulas
Using recursion schemes as generators of word languages

Idea: A word is just a linear tree.

Represent a finite word “a b c” (say) as the applicative term $a (b (c e))$, viewing a, b and c as symbols of arity 1, where e is the arity-0 end-of-word marker.

Fix an input alphabet Σ. We can use a (non-deterministic) recursion scheme to generate finite-word languages, with ranked alphabet

$$\bar{\Sigma} := \{ a : 1 \mid a \in \Sigma \} \cup \{ e : 0 \}.$$
Examples

Recall: in word-generating recursion schemes, letters $a, b : 1$ (i.e. of arity 1) and $e : 0$ is the end-of-word.

1. The regular language $(a (a + b)^* b)^*$ is generated by the order-0 recursion scheme:

$$
\begin{align*}
S & \rightarrow e \mid a F \\
F & \rightarrow a F \mid b F \mid b S
\end{align*}
$$

2. The context-free language $\{ a^n b^n \mid n \geq 0 \}$ is generated by the order-1 recursion scheme:

$$
\begin{align*}
S & \rightarrow F e \\
F x & \rightarrow a (F (b x)) \mid x
\end{align*}
$$
Regular languages are exactly order-0

Lemma

A word language is regular iff it is generated by an order-0 (non-deterministic) recursion scheme.

Take a NFA \((Q, \Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q, q_I, F \subseteq Q)\). Define an order-0 RS \((\Sigma, \{F_q \mid q \in Q\}, F_{q_I}, \mathcal{R})\) where \(\mathcal{R}\) has following rules:

- For each \((q, a, q') \in \Delta\), introduce a rewrite rule:
 \[F_q \rightarrow a F_{q'} \]

- For each \((q, \epsilon, q') \in \Delta\), introduce a rewrite rule:
 \[F_q \rightarrow F_{q'} \]

- For each \(q_f \in F\), introduce
 \[F_{q_f} \rightarrow e \]
Exercise

1. Prove the following:

Lemma

A word language is context-free (equivalently, recognisable by a non-deterministic pushdown automata) iff it is generated by an order-1 (word-language) recursion scheme.

2. Find an order-2 (word-language) recursion scheme that generates

\[\{ a^i b^i c^i \mid i \geq 0 \} . \]
A PDA is a finite-state machine equipped with a pushdown (LIFO) stack. Transition

\[(q, a, \gamma, q', \theta) \in Q \times \Sigma \times \Gamma \times Q \times Op_1\]

where \(Op_1 = \{ push\gamma \mid \gamma \in \Gamma \} \cup \{ pop \} \).

\[push_1 \gamma : [\gamma_1 \cdots \gamma_n] \rightarrow [\gamma_1 \cdots \gamma_n \gamma]\]

\[pop_1 : [\gamma_1 \cdots \gamma_n \gamma_{n+1}] \rightarrow [\gamma_1 \cdots \gamma_n]\]

(Top of stack is the righthand end.)

Example. \(\{ a^i b^i \mid i \geq 0 \} \) is recognisable by a PDA. Idea: use the depth of stack to remember number of \(a\) already read.

\[q_0 [_] \xrightarrow{a} q_0 [\gamma] \xrightarrow{a} q_0 [\gamma \gamma] \xrightarrow{b} q_0 [\gamma] \xrightarrow{b} q_0 [_]\]
Higher-order pushdown automata (HOPDA) [Maslov 74]

Order-2 pushdown automata
A 1-stack is an ordinary stack. A 2-stack (resp. \(n + 1\)-stack) is a stack of 1-stacks (resp. \(n\)-stack).

Operations on 2-stacks: \(s_i\) ranges over 1-stacks.

\[
\begin{align*}
\text{push}_2 &: \ [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n]] \mapsto [s_1, \cdots, s_{i-1}, s_i s_i] \\
\text{pop}_2 &: \ [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n]] \mapsto [s_1, \cdots, s_{i-1}] \\
\text{push}_1 \gamma &: \ [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n]] \mapsto [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n \gamma]] \\
\text{pop}_1 &: \ [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n, \gamma_{n+1}]] \mapsto [s_1, \cdots, s_{i-1}, [\gamma_1, \cdots, \gamma_n]]
\end{align*}
\]

Idea extends to all finite orders: an order-\(n\) PDA has an order-\(n\) stack, and has \text{push}_i and \text{pop}_i for each \(1 \leq i \leq n\).
Example: \(L := \{ a^n b^n c^n : n \geq 0 \} \) is recognisable by an order-2 PDA

\(L \) is not context free—thanks to the “\(uvwxy \) Lemma”.

Idea: Use top 1-stack to process \(a^n b^n \), and height of 2-stack to remember \(n \).

\[
\begin{align*}
q_1 \begin{bmatrix} [] \end{bmatrix} & \xrightarrow{a} q_1 \begin{bmatrix} [[]] [z] \end{bmatrix} & \xrightarrow{a} q_1 \begin{bmatrix} [[]] [z] [zz] \end{bmatrix} \\
& \downarrow b & \downarrow b \\
q_2 \begin{bmatrix} [] [z] [z] \end{bmatrix} & \xrightarrow{b} q_2 \begin{bmatrix} [] [z] [z] \end{bmatrix} \\
& \downarrow b \\
q_3 \begin{bmatrix} [] \end{bmatrix} & \leftarrow c q_3 \begin{bmatrix} [[]] [z] \end{bmatrix} & \leftarrow c q_2 \begin{bmatrix} [] [z] [] \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
& \xrightarrow{a} \text{push}_2 ; \text{push}_1 z \\
& \xrightarrow{b} \text{pop}_1 \\
& \xrightarrow{c} \text{pop}_2 \\
\text{‘read } a\text{’} & \quad \text{‘read } b\text{’} & \quad \text{‘read } c\text{’}
\end{align*}
\]
Relating the two generator-families: word-language case

Theorem (Equi-expressivity)

For each $n \geq 0$, the three formalisms

1. order-n pushdown automata (Maslov 76)
2. order-n safe recursion schemes (Damm 82, Damm + Goerdt 86)
3. order-n indexed grammars (Maslov 76)

generate the same class of word languages.

What is safety? (See later.)
HOPDA define an infinite hierarchy of word languages.

Low orders are well-known: orders 0, 1 and 2 are the regular, context free, and indexed languages (Aho 68). Higher-order languages are poorly understood.

For each $n \geq 0$, the order-n languages form an abstract family of languages (closed under $+$, \cdot, $(-)^*$, intersection with regular languages, homomorphism and inverse homo.)

For each $n \geq 0$, the emptiness problem for order-n PDA is decidable.

A recent result.

Theorem (Inaba + Maneth FSTTCS08)

All languages of the Maslov Hierarchy are context-sensitive.
Two Families of Generators of Infinite Structures

HOPDA can be used as recognising/generating device for

1. finite-word languages (Maslov 74) and \(\omega \)-word languages
2. possibly-infinite ranked trees (KNU01), and generally languages of such trees
3. possibly infinite graphs (Muller+Schupp 86, Courcelle 95, Cachat 03)

HORS (higher-order recursion schemes) can also be used to generate word languages, potentially-infinite trees (and languages there of) and graphs.
Why study the two families of generators?

They are relevant to semantics and verification:

1. Recursion schemes are an old and influential formalism for the semantical analysis of imperative and functional programs (Nivat 75, Damm 82). They are a compelling model of computation for higher-order functional programs.

2. Pushdown automata characterise the control flow of 1st-order (recursive) procedural programs. Pushdown checkers (e.g. MOPED) are essential back-end engines of state-of-the-art software model checkers (e.g. SLAM, Terminator).

3. Higher-order (collapsible) pushdown automata are highly accurate models of computation of higher-order functional programs.