Higher-Order Model Checking
II: Recursion Schemes and their Algorithmics

Luke Ong

University of Oxford
http://www.cs.ox.ac.uk/people/luke.ong/personal/
http://mjolnir.cs.ox.ac.uk

Estonia Winter School in Computer Science, 3-8 Mar 2013
A challenge problem in higher-order verification

Example: Consider $\llbracket G \rrbracket$ on the right

- $\varphi_1 = \text{“Infinitely many } f\text{-nodes are reachable”}$.
- $\varphi_2 = \text{“Only finitely many } g\text{-nodes are reachable”}$.

Every node on the tree satisfies $\varphi_1 \lor \varphi_2$.

Let RecSchTree_n be the class of Σ-labelled trees generated by order-n recursion schemes.

Is the “MSO Model-Checking Problem for RecSchTree_n” decidable?

- INSTANCE: An order-n recursion scheme G, and an MSO formula φ
- QUESTION: Does the Σ-labelled tree $\llbracket G \rrbracket$ satisfy φ?
Why study monadic second-order (MSO) logic?

Because it is the gold standard of logics for describing correctness properties.

- **MSO is very expressive.**
 Over graphs, MSO is more expressive than the modal mu-calculus, into which all standard temporal logics (e.g. LTL, CTL, CTL*, etc.) can embed.

- **It is hard to extend MSO meaningfully without sacrificing decidability where it holds.**
Fix a vocabulary. Three types of predicate symbols:

1. **Parent-child relationship between nodes**: \(d_i(x, y) \) \(\equiv \) “\(y \) is \(i \)-child of \(x \)”

2. **Node labelling**: \(p_f(x) \) \(\equiv \) “\(x \) has label \(f \)” where \(f \) is a \(\Sigma \)-symbol

3. **Set-membership**: \(x \in X \)

First-order variables: \(x, y, z, \text{ etc.} \) (ranging over nodes)

Second-order variables: \(X, Y, Z, \text{ etc.} \) (ranging over sets of nodes)

MSO formulas are generated from three kinds of atomic formulas:

\[
\begin{align*}
&d_i(x, y), \quad p_f(x), \quad x \in X \\
\end{align*}
\]

and closed under boolean connectives, first-order quantification (\(\forall x. -, \exists x. - \)) and second-order quantifications: (\(\forall X. -, \exists X. - \)).

A \(\Sigma \)-labelled tree \(t : \text{dom}(t) \rightarrow \Sigma \) is represented as a structure

\[
\langle \text{dom}(t), \langle d_i : 1 \leq i \leq m \rangle, \langle p_f : f \in \Sigma \rangle \rangle
\]
Examples of MSO-definable properties

Our version of MSOL is parsimonious. Several useful predicates are definable:

1. **Set inclusion (and hence equality):** $X \subseteq Y \equiv \forall x : x \in X \rightarrow x \in Y$.

2. **“Is-an-ancestor-of” or prefix ordering $x \leq y$ (and hence $x = y$):**

 $$\text{PrefCl}(X) \equiv \forall x, y : y \in X \land \bigvee_{i=1}^m d_i(x, y) \rightarrow x \in X$$

 $$x \leq y \equiv \forall X : \text{PrefCl}(X) \land y \in X \rightarrow x \in X$$

3. **Reachability property:** “X is a path”

 $$\text{Path}(X) \equiv \forall x, y \in X : x \leq y \lor y \leq x \land$$

 $$\forall x, y, z : x \in X \land z \in X \land x \leq y \leq z \rightarrow y \in X$$

 $$\text{MaxPath}(X) \equiv \text{Path}(X) \land$$

 $$\forall Y : \text{Path}(Y) \land X \subseteq Y \rightarrow Y \subseteq X.$$
Example: “A tree has infinitely many f-labelled nodes”

A set of nodes is a cut if (i) no two nodes in it are \leq-compatible, and (ii) it has a non-empty intersection with every maximal path.

$$\text{Cut}(X) \equiv \forall x, y \in X : \neg(x \leq y \lor y \leq x) \land \forall Z : (\text{MaxPath}(Z) \rightarrow \exists z \in Z : z \in X)$$

Lemma. A set X of nodes in a finitely-branching tree is finite iff there is a cut C such that every X-node is a prefix of some C-node.

$$\text{Finite}(X) \equiv \exists Y : (\text{Cut}(Y) \land \forall x \in X : \exists y \in Y : x \leq y)$$

Hence “there are finitely many nodes labelled by f” is expressible in MSOL by

$$\exists X : (\text{Finite}(X) \land \forall x : p_f(x) \rightarrow x \in X)$$

But “MSOL cannot count”: E.g. “X has twice as many elements as Y” is not expressible in MSO.
Recapitulation

- Two families of generators: HORS and HOPDA

Today’s lecture

-
-
-
A (selective) survey of MSO-decidable structures: up to 2002

- **Rabin 1969**: Infinite binary trees and regular trees. “Mother of all decidability results in algorithmic verification.”
- **Muller and Schupp 1985**: Configuration graphs of PDA.
- **Knapik, Niwiński and Urzyczyn (TLCA 2001, FOSSACS 2002)**:
 - $\text{PushdownTree}_n\Sigma = \text{Trees generated by order-}n\text{ pushdown automata.}$
 - $\text{SafeRecSchTree}_n\Sigma = \text{Trees generated by order-}n\text{ safe rec. schemes.}$
- **Subsuming all the above**: Caucal (MFCS 2002). $\text{CaucalTree}_n\Sigma$ and $\text{CaucalGraph}_n\Sigma$.

Theorem (KNU-Caucal 2002)

For $n \geq 0$, $\text{PushdownTree}_n\Sigma = \text{SafeRecSchTree}_n\Sigma = \text{CaucalTree}_n\Sigma$; and they have decidable MSO theories.
What is the safety constraint on recursion schemes?

Safety is a set of constraints on where variables may occur in a term.

Definition (Damm TCS 82, KNU FoSSaCS’02)

An order-2 equation is **unsafe** if the RHS has a subterm P s.t.

1. P is order 1
2. P occurs in an **operand** position (i.e. as 2nd argument of application)
3. P contains an order-0 parameter.

Consequence: An order-i subterm of a safe term can only have free variables of order at least i.

Example (unsafe rule).

\[
F : (o \rightarrow o) \rightarrow o \rightarrow o \rightarrow o, \quad f : o^2 \rightarrow o, \quad x, y : o.
\]

\[
F \varphi x y = f (F (F \varphi y) y (\varphi x)) a
\]

The subterm $F \varphi y$ has order 1, but the free variable y has order 0.
What is the point of safety?

Safety does have an important algorithmic advantage!

Theorem (KNU 02, Blum + O. TLCA 07, LMCS 09)

Substitution (hence β-red.) in safe λ-calculus can be safely implemented without renaming bound variables! Hence no fresh names needed.

Theorem

1. (Schwichtenberg 76) The numeric functions representable by simply-typed λ-terms are multivariate polynomials with conditional.

2. (Blum + O. LMCS 09) The numeric functions representable by simply-typed safe λ-terms are the multivariate polynomials.

(See (Blum + O. LMCS 09) for a study on the safe lambda calculus.)
Infinite structures generated by recursion schemes: key questions

1. **MSO decidability**: Is safety a genuine constraint for decidability? I.e. do trees generated by (arbitrary) recursion schemes have decidable MSO theories?

2. **Machine characterisation**: Find a hierarchy of automata that characterise the expressive power of recursion schemes. I.e. how should the power of higher-order pushdown automata be augmented to achieve equi-expressivity with (arbitrary) recursion schemes?

3. **Expressivity**: Is safety a genuine constraint for expressivity? I.e. are there inherently unsafe word languages / trees / graphs?
4 **Graph families:**

1. **Definition:** What is a good definition of “graphs generated by recursion schemes”?

2. **Model-checking properties:** What are the **decidable** (modal-) logical theories of the graph families?
Q1. Do trees in $\text{RecSchTree}_n \Sigma$ have decidable MSO theories?

Some progress:

Theorem (Aehlig, de Miranda + O. TLCA 2005)

Σ-labelled trees generated by order-2 recursion schemes (whether safe or not) have decidable MSO theories.

Theorem (Knapik, Niwinski, Urczyczn + Walukiewicz, ICALP 2005)

Modal μ-calculus model checking problem for homogenously-typed order-2 schemes (whether safe or not) is 2-EXPTIME complete.

What about higher orders?

Yes: MSO decidability extends to all orders (O. LICS06).
Q1. Do trees in $\text{RecSchTree}_{n,\Sigma}$ have decidable MSO theories? Yes

Theorem (O. LICS 2006)

For $n \geq 0$, the modal mu-calculus model-checking problem for $\text{RecSchTree}_{n,\Sigma}$ (i.e. trees generated by order-n recursion schemes) is n-EXPTIME complete. Thus these trees have decidable MSO theories.

Proof Idea. Two key ingredients:

Generated tree $\llbracket G \rrbracket$ satisfies mu-calculus formula φ

$\iff \{ \text{Emerson + Jutla 1991}\}$

APT \mathcal{B}_φ has accepting run-tree over generated tree $\llbracket G \rrbracket$

$\iff \{ \textbf{I. Transference Principle: Traversal-Path Correspondence}\}$

APT \mathcal{B}_φ has accepting traversal-tree over computation tree $\lambda(G)$

$\iff \{ \textbf{II. Simulation of traversals by paths} \}$

APT \mathcal{C}_φ has an accepting run-tree over computation tree $\lambda(G)$ which is decidable because $\lambda(G)$ is regular.
Transference principle, based on a theory of traversals

\[G : \begin{cases}
S &= FH \\
F \varphi &= \varphi(F \varphi) \\
Hz &= f zz
\end{cases} \quad \Rightarrow \quad \overline{G} : \begin{cases}
S &= \lambda. F (\lambda x. H \lambda x) \\
F &= \lambda \varphi. \varphi(\lambda. F (\lambda y. \varphi(\lambda y)))) \\
H &= \lambda z. f(\lambda z)(\lambda z)
\end{cases} \]

\[\boxed{G} \]

\[\lambda(G) \]
Idea: β-reduction is global (i.e. substitution changes the term being evaluated); game semantics gives an equivalent but local view. A traversal (over the computation tree $\lambda(G)$) is a trace of the local computation that produces a path (over $\llbracket G \rrbracket$).

Theorem (Path-traversal correspondence)

Let G be an order-n recursion scheme.

(i) There is a 1-1 correspondence between maximal paths p in (Σ-labelled) generated tree $\llbracket G \rrbracket$ and maximal traversals t_p over computation tree $\lambda(G)$.

(ii) Further for each p, we have $p \restriction \Sigma = t_p \restriction \Sigma$.

Proof is by game semantics.

Explanation (for game semanticists):

- Term-tree $\llbracket G \rrbracket$ is (a representation of) the game semantics of G.
- Paths in $\llbracket G \rrbracket$ correspond to plays in the strategy-denotation.
- Traversals t_p over computation tree $\lambda(G)$ are just (representations of) the uncoverings of the plays ($=\text{path}$) p in the game semantics of G.
Four different proofs of the MSO decidability result

1. Game semantics and traversals (O. LICS06)
 - variable profiles. E.g. a profile of \((o \rightarrow o) \rightarrow o\) is \(\{\{q\}, q\}, \{q, q'\}, q'\}\), \(q\)

2. Collapsible pushdown automata (Hague, Murawski, O. & Serre LICS08)
 - equi-expressivity theorem + rank aware automata

3. Type-theoretic characterisation of APT (Kobayashi & O. LICS09)
 - intersection types. E.g. \((q \rightarrow q) \land (q \land q' \rightarrow q') \rightarrow q\)

4. Krivine machine (Salvati & Walukiewicz ICALP11)
 - residuals

A common pattern

1. Decision problem equivalent to solving an infinite parity game.
2. Simulate the infinite parity game by a finite parity game.
Order-2 collapsible pushdown automata [HOMS, LiCS 08a] are essentially the same as 2PDA with links [AdMO 05] and panic automata [KNUW 05].

Idea: Each stack symbol in 2-stack “remembers” the stack content at the point it was first created (i.e. $push_1$ed onto the stack), by way of a pointer to some 1-stack underneath it (if there is one such).

Two new stack operations: $a \in \Gamma$ (stack alphabet)

- $push_1 a$: pushes a onto the top of the top 1-stack, together with a pointer to the 1-stack immediately below the top 1-stack.
- $collapse$ ($= panic$) collapses the 2-stack down to the prefix pointed to by the top$_1$-element of the 2-stack.

Note that the pointer-relation is preserved by $push_2$.
Collapsible pushdown automata: extending to all finite orders

In order-n CPDA, there are $n - 1$ versions of $push_1$, namely, $push_j^1 a$, with $1 \leq j \leq n - 1$:

$push_j^1 a$: pushes a onto the top of the top 1-stack, together with a pointer to the j-stack immediately below the top j-stack.
Example: Urzyczyn’s Language U over alphabet $\{ (,), * \}$

Definition (Aehlig, de Miranda + O. FoSSaCS 05) A U-word has 3 segments:

$$\underbrace{\cdots (\cdots (\cdots) \cdots) \cdots }_{A} \underbrace{ (\cdots) \cdots \cdots }_{B} \underbrace{ \ast \cdots \ast }_{C}$$

- Segment A is a prefix of a well-bracketed word that ends in $($, and the opening $($ is not matched in the entire word.
- Segment B is a well-bracketed word.
- Segment C has length equal to the number of $($ in segment A.

Examples

1. $((()))(())(())\ast\ast\ast$ is a U-word
2. For each $n \geq 0$, we have $(n^n)(\ast^n\ast\ast$ is a U-word.
 Hence by “uvwxy Lemma”, U is not context-free.
Recognising U by a (det.) 2CPDA. E.g. $((())((()))*** \in U$
(Ignoring control states for simplicity)

<table>
<thead>
<tr>
<th>Upon reading</th>
<th>Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>$push_2 ; push_1 a$</td>
</tr>
<tr>
<td>first $*$</td>
<td>pop_1</td>
</tr>
<tr>
<td>subsequent $*$</td>
<td>$collapse$</td>
</tr>
<tr>
<td></td>
<td>pop_2</td>
</tr>
</tbody>
</table>

What does the depth of the top 1-stack mean?
Is order-n CPDA strictly more expressive than order-n PDA?

Does the \textit{collapse} operation add any expressive power?

Lemma (AdMO FoSSaCS05): Urzyczyn’s language U is quite telling!

1. U is not recognised by a 1PDA.
2. U is recognised by a non-deterministic 2PDA.
3. U is recognised by a deterministic 2CPDA.

Question

\textit{Is U recognisable by a deterministic 2PDA? or by nPDA for any n?}

If true, there is an associated tree that is generated by an order-2 recursion scheme, but not by any order-2 \textit{safe} recursion scheme.
Theorem (Equi-expressivity [Hague, Murawski, O. & Serre LICS08])

For each \(n \geq 0 \), order-\(n \) collapsible PDA and order-\(n \) recursion schemes are equi-expressive for \(\Sigma \)-labelled trees.

Proof idea

- From recursion scheme to CPDA: Use game semantics. Code traversals as \(n \)-stacks. **Invariant**: The top 1-stack is the P-view of the encoded traversal.
- From CPDA to recursion scheme: Code configuration \(c \) as \(\Sigma \)-term \(M_c \), so that \(c \rightarrow c' \) implies \(M_c \) rewrites to \(M_{c'} \).

CPDA are a machine characterization of simply-typed lambda calculus with recursions.
A direct proof (without game semantics) [Carayol & Serre LICS12].
Q3: Is safety a genuine constraint on expressivity?

Question (Safety, KNW FoSSaCS02)

Are there inherently unsafe word languages / trees / graphs?

Word languages? Yes

Theorem (Parys STACS11, LICS12)

There is a language (similar to U) recognised by a deterministic 2CPDA but not by any deterministic nPDA for all $n \geq 0$.

Proof uses a powerful pumping lemma for HOPDA.

(Another pumping lemma for nCPDA is used to prove a hierarchy theorem for collapsible graphs and trees [Kartzow & Parys, MFCS12])

Trees? Yes

Corollary (Parys STACS11, LICS12)

There is a tree generated by an order-2 recursion scheme but not by any safe HORS.
Graphs? Yes.

Theorem (Hague, Murawski, O and Serre LICS08)

1. Solvability of parity games over order-n CPDA graphs is n-EXPTIME complete.
2. There is an 2CPDA configuration graph with an undecidable MSO theory.

Corollary

There is a 2CPDA whose configuration graph (semi-infinite grid) is not that of any nPDA, for any n.
A safety question for non-determinacy

Question (Safety non-determinacy)

Is there a word language recognised by a order-n CPDA which is not recognisable by any non-deterministic HOPDA?

For order 2, the answer is no.

Theorem (Aehlig, de Miranda and O. FoSSaCS 2005)

For every order-2 recursion scheme, there is a safe non-deterministic order-2 recursion scheme that generates the same word language.