Link Semantic Models
Objective

To deal with various programming features in a uniform way

- How to select proper observation type.
- How to link various observation spaces
- How to derive semantic functions
- How to ensure the model extension preserves algebraic laws
Assignment

1. $sem_1(x := e) = x' = e$

2. $sem_2(x := e) = \mathcal{D}(e) \vdash (x' = e)$

 where $\mathcal{D}(e)$ is true when evaluation of e terminates.

3. $sem_3(x := e) =
\begin{align*}
II \triangleleft eflag \triangleright & \begin{cases}
(true \vdash x' = e \land \neg eflag') \\
\langle \mathcal{D}(e) \rangle \\
(true \vdash x' = x \land eflag')
\end{cases}
\end{align*}$

where $eflag$ is an error indicator.
1. \(\text{sem}1(x := e \land x := f) = (x' = e) \lor (x' = f) \)

2. \(\text{sem}2(x := e \land x := f) = (D(e) \land D(f)) \vdash (x' = e \lor x' = f) \)

3. \(\text{sem}3(x := e \land x := f) = \)

\[
\begin{align*}
\text{II} \triangleleft eflag \triangleright true \vdash \\
\left(D(e) \land (x' = e) \land \neg eflag' \lor \right.
\left. D(f) \land (x' = f) \land \neg eflag' \lor \right.
\left. \neg(D(e) \lor D(f)) \land \right.
\left. (x' = x) \land eflag' \right)
\end{align*}
\]
How to understand complicated languages

• Start with the core of a language

• Add to it, one at a time, a number of new features that are required.

• Ideally, the properties of programs established in the simpler theories of programming can remain valid in the enriched ones.
Toward a uniform treatment

- Select an observation space for the new feature
- Characterise the defining properties of new feature
- Link observation spaces by an embedding mapping
- Derive the new semantic function by examining the corresponding commuting equation
Enriched Type

Let D_1 be the family of relations over the base type S, and sem_1 a semantic function of the language L over the domain D_1. To introduce a new feature to L we construct an enriched type

$$T =_{df} extend(S)$$

and its link with the original type S

$$\rho : S \leftrightarrow T$$
The second step is to characterise the defining properties of programs in the enriched domain D_2. Such algebraic laws, often called *healthiness conditions*, are only valid for real programs. Let $D_2 =_{df} T \leftrightarrow T$. The semantic function $\text{sem}_2 : \mathbb{L} \to D_2$ is required to establish the commuting diagram

$$\rho; \text{sem}_2(P) = \text{sem}_1(P); \rho$$

$\text{sem}_2(P)$ is selected among the healthy solutions of the equation
Let sem_1 and sem_2 be semantic functions of the programming language. A link $*$ is required to be

1. a monotonic mapping

$$sem_2(P) = sem_1(P)^*$$

2. a homomorphism,

$$(sem_1(P) \text{ op } sem_1(Q))^* = sem_2(P) \text{ op } sem_2(Q)$$
Existence of Solutions

Under which condition on the relation ρ, the linear equation

$$\rho ; X = (\text{sem}1(P); \rho)$$

Theorem

$\rho; X = R$ has solutions if and only if $\rho; (\rho \setminus R) = R$

where $\rho \setminus R$ denotes the weakest postspecification of ρ with respect to R:

$$(\rho; X) \Rightarrow R \text{ if and only if } X \Rightarrow \rho \setminus R$$
Proof

$\rho; X = R$

implies $X \Rightarrow \rho \setminus R$

implies $(\rho; X) \Rightarrow (\rho; (\rho \setminus R))$

implies $R \Rightarrow (\rho; (\rho \setminus R))$

implies $\rho; (\rho \setminus R) = R$
Theorem If there exists Q such that $\rho; Q; R = R$, then $\rho; (\rho\set R) = R$

Proof $(\rho; Q; R) = R$

implies $(Q; R) \Rightarrow (\rho\set R)$

implies $\rho; (Q; R) \Rightarrow \rho; (\rho\set R)$

implies $R \Rightarrow \rho; (\rho\set R)$

Corollary $\forall R \bullet \rho; (\rho\set R) = R$ if and only if $\rho; (\rho\set id) = id$
How to Calculate $sem2(P)$

Theorem

If $\rho; (\rho\setminus id) = id$ then

$$sem2(P) = \rho\setminus (sem1(P); \rho) =$$

$$\neg(\tilde{\rho}; true) \lor (\tilde{\rho}; sem1(P); \rho)$$

where $\tilde{\rho}$ denotes the converse of the relation ρ
Distributivity

Theorem

If $\rho; (\rho \setminus id_S) = id_S$, then

1. $\rho \setminus (R_1 \lor R_2) = (\rho \setminus R_1) \lor (\rho \setminus R_2)$

2. $\rho \setminus ((R_1; R_2); \rho) = (\rho \setminus (R_1; \rho)); (\rho \setminus (R_2; \rho))$
Theorem

\[X; P = R \] has solutions if and only if \(\tilde{P}; X = \tilde{R} \) does so.

Theorem

The equation \(X; P = R \) has solutions if and only if \((R/P); P = R \)

where \(R/P \) denotes the weakest prespecification of \(P \) with respect to \(R \).
Proof

$X; P = R$ has solutions

$\equiv \bar{P}; X = \bar{R}$ has solutions

$\equiv \bar{P}; (\bar{P}\backslash\bar{R}) = \bar{R}$

$\equiv \bar{P}; \neg(P; \neg\bar{R}) = \bar{R}$

$\equiv \bar{P}; \neg(\neg R; \bar{P}) \sim = \bar{R}$

$\equiv (R/P); P = R$
Solutions of \((X; P) = R\)

Theorem

If \((id/P); P = id\) then

\[
R/P = \neg(true; \tilde{P}) \lor R; \tilde{P}
\]

Theorem (Distributivity)

If \((id/P); P = id\), then

1. \((R_1 \triangleleft b(s) \triangleright R_2)/P = (R_1/P) \triangleleft b(s) \triangleright (R_2/P)\)
2. \((R_1 \lor R_2)/P = (R_1/P) \lor (R_2/P)\)
Observation: State of Variables

Let $S =_{df} (VAR \rightarrow VAL)$ be the base type. A program can be modelled by a predicate which represents a binary relation on S.

<table>
<thead>
<tr>
<th>Program</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := e$</td>
<td>$x' = e \land y' = y \land \ldots \land z' = z$</td>
</tr>
<tr>
<td>skip</td>
<td>$x' = x \land y' = y \land \ldots \land z' = z$</td>
</tr>
<tr>
<td>$P \land Q$</td>
<td>$P \lor Q$</td>
</tr>
<tr>
<td>$P \triangleleft b(x) \triangleright Q$</td>
<td>$P \land b(x) \lor \neg b(x) \land Q$</td>
</tr>
<tr>
<td>$P ; Q$</td>
<td>$\exists m \bullet (P[m/s'] \land Q[m/s])$</td>
</tr>
</tbody>
</table>
Termination

To specify non-termination behaviour we introduce a pair of Boolean variables to denote the relevant observation:

1. ok records the observation that the program has been started.

2. ok' records the observation that the program has terminated. When the program fails to terminate, the value of ok' is not determinable.
Healthiness Conditions

1. $P = (\text{ok} \Rightarrow P)$
2. $[P[\text{false}/\text{ok}'] \Rightarrow P[\text{true}/\text{ok}']]$
3. $P = P; (\text{ok} \Rightarrow \text{ok}' \land x' = x \land ..z' = z)$

Theorem

P is heathy iff it has the form $Q \vdash R$

where $Q \vdash R =_{df} (\text{ok} \land Q) \Rightarrow (\text{ok}' \land R)$
We extend the base type S by adding the logical variable ok

$$T1 =_{df} S \times \{ok\} \rightarrow \text{Bool}$$

Define the embedding ρ from S to $T1$ by

$$\rho =_{df} ok' \land (x' = x) \land ... \land (z' = z)$$
Enriched Observation

For any predicate P representing a binary relation on S, we define its image P^* on the enriched domain $T \leftrightarrow T$ as the weakest healthy solution of the equation

$$\rho; X = P; \rho$$

Theorem

$\rho; X = P; \rho$ has the weakest solution

$$P^* = true \vdash P$$
The new definition of primitive commands of our programming language is given by the following table.

<table>
<thead>
<tr>
<th>Program</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>(true \vdash (x' = x \land \ldots \land z' = z))</td>
</tr>
<tr>
<td>(x := e)</td>
<td>(true \vdash (x' = e \land \ldots \land z' = z))</td>
</tr>
</tbody>
</table>
Theorem

(1) \((P; Q)^* = P^*; Q^*\)
(2) \((P \lor Q)^* = P^* \lor Q^*\)
(3) \((P \land Q)^* = P^* \land Q^*\)
(4) \((P \triangleleft b \triangleright Q)^* = P^* \triangleleft b \triangleright Q^*\)

* is a homomorphism
Reactive Paradigm

For reactive programming paradigms we are required to distinguish a complete terminated computation from an incomplete one that is suspended. The former is used to specify the case where the program has finished its execution, but the latter suggests that the program cannot proceed further without an interaction with its environment. For example, a synchronisation command

\[\text{wait}(v = 0) \]

can not be executed unless the value of \(v \) is set to zero, perhaps by some other programs in its environment.
We introduce a Boolean variable \(wait \) into the type \(T1 \)

\[
T2 =_{df} T1 \times (\{wait\} \rightarrow \text{Bool})
\]

The variable \(wait \) takes the value false if and only when the program has completed its execution.
If a program \(Q \) is asked to start in a waiting state of its predecessor, it leaves the state unchanged.

\[
Q = II \triangleleft wait \triangleright Q
\]

where

\[
II =_{df} true \vdash (wait' = wait \land x' = x \land .. \land z' = z)
\]
Define $\rho =_{df} true \vdash (\neg \text{wait'} \land x' = x \land \ldots \land z' = z)$

For any design d in the domain $T1 \leftrightarrow T1$, we define its image d^* in the extended domain $T2 \leftrightarrow T2$ as the weakest healthy solution of the equation

$$\rho; X = d; \rho$$

Theorem

(1) $(b \vdash R)^* = II \triangleleft \text{wait} \triangleright (b \vdash (R \land \neg \text{wait'}))$

(2) * is a homomorphism
1. Extended type: \(T3 =_{df} T1 \times (\{tr\} \rightarrow \text{seq}(\mathcal{A})) \)

2. Healthiness conditions:
 \[
 \begin{align*}
 (1) \quad P &= P \land (\text{tr} \leq \text{tr}') \\
 (2) \quad P(\text{tr}, \text{tr}') &= P(\epsilon, (\text{tr}' - \text{tr}))
 \end{align*}
 \]

3. Embedding:
 \[
 \begin{align*}
 \bullet \quad \rho =_{df} \text{true} \vdash (\text{tr}' = \epsilon \land x' = x \land \ldots \land z' = z) \\
 \bullet \quad (b \vdash R)^* = (b \vdash (R \land \text{tr} = \text{tr}')) \land (\text{tr} \leq \text{tr}')
 \end{align*}
 \]

4. \(* \) is a homomorphism
Exception

1. Extended type: $T_4 =_{df} T_1 \times (\{e\text{flag}\} \rightarrow \text{Bool})$

2. Healthiness conditions:

 $P = II \triangleleft e\text{flag} \triangleright P$

3. Embedding:

 $\bullet \, \rho =_{df} \text{true} \vdash (\neg e\text{flag}' \land x' = x \land \ldots \land z' = z)$

 $\bullet \, (b \vdash R)^* = II \triangleleft e\text{flag} \triangleright (b \vdash (R \land \neg e\text{flag}'))$

4. $*$ is a homomorphism
1. Extended Type

\[T5 \; =_{df} \; \{ \text{prob} : S \rightarrow [0, 1] \mid \sum_{s \in S} \text{prob}(s) = 1 \} \]

2. Embedding

- \(\rho(\text{ok, prob, ok}', s') \; =_{df} \; \text{true} \vdash \text{prob}(s') > 0 \)
- \((b \vdash R)^* \; = \; b \vdash (\text{prob}'(R) = 1) \)
The new definition of primitive commands is given by calculation

<table>
<thead>
<tr>
<th>Primitive command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>skip</code></td>
<td><code>true ⊢ prob'(s) = 1</code></td>
</tr>
<tr>
<td><code>x := e</code></td>
<td><code>true ⊢ prob'(s[e/x]) = 1</code></td>
</tr>
</tbody>
</table>
Distributivity

Theorem

(1) \((d_1 \triangleleft b \triangleright d_2)^* = d_1^* \triangleleft b \triangleright d_2^*\)

(2) \((d_1 \lor d_2)^* = d_1^* \lor d_2^* \lor \bigvee_{0 < r < 1}(d_1^* \parallel_{M_r} d_2^*)\)

(3) \((d_1; d_2)^* = d_1^* ; \uparrow d_2^*\)

where

\((b_1 \vdash R_1)\|_{M_r} (b_2 \vdash R_2) =_{df} (b_1 \land b_2) \vdash (R_1(s, prob_1') \land R_1(s, prob_2')) ; M_r\)

\(M_r =_{df} true \vdash (prob' = r \times prob_1 + (1 - r) \times prob_2).\)
In fact, there is a retraction to link the enriched model with the old one, because there exists a mapping \dagger such that

$$(P^*)^\dagger = P \quad \text{and} \quad (Q^\dagger)^* \supseteq Q$$

- In the state-oriented development methods the embedding ρ is designed to connect abstract data type with its concrete representation.

- In model checking ρ is used for data abstraction by dramatically reducing the size of state space.