Online Algorithms
Lectures 1 and 2

Jiří Sgall

Computer Science Institute of the Charles Univ., Praha

EWSCS, Palmse, March 2020
Outline of the course

Four mostly independent lectures:

1. Makespan scheduling
2. Paging and k-server
3. Bin packing
4. Throughput scheduling
Makespan Scheduling — Definitions

- Environment: m machines.
- Input: Sequence of **jobs (tasks)** with processing times p_1, \ldots, p_n
- Output: Schedule of jobs on m machines
 Formally: Partition $\{1, \ldots, n\}$ into sets I_1, \ldots, I_m
- Objective: Minimize the **makespan (length of schedule)**
 Formally: minimize $\max_{i \leq m} \sum_{j \in I_i} p_j$
Makespan Scheduling — Definitions

Makespan Scheduling

- Environment: \(m \) machines.
- Input: Sequence of jobs (tasks) with processing times \(p_1, \ldots, p_n \)
- Output: Schedule of jobs on \(m \) machines
 Formally: Partition \(\{1, \ldots, n\} \) into sets \(I_1, \ldots, I_m \)
- Objective: Minimize the makespan (length of schedule)
 Formally: minimize \(\max_{i \leq m} \sum_{j \in I_i} p_j \)

Online setting

Jobs come one by one, with known \(p_j \);
need to be assigned immediately, no changes later
Competitive ratio

Algorithm ALG is R-competitive if there exists a constant C such that for each instance I, the algorithm gives

$$ALG(I) \leq R \cdot OPT(I) + C$$
Competitive ratio

Algorithm ALG is R-competitive if there exists a constant C such that for each instance I, the algorithm gives

$$E[\text{ALG}(I)] \leq R \cdot \text{OPT}(I) + C$$
Competitive ratio

Algorithm ALG is R-competitive if there exists a constant C such that for each instance I, the algorithm gives

$$E[ALG(I)] \leq R \cdot OPT(I) + C$$

Online setting

Jobs come one by one, need to be assigned immediately
Competitive ratio

Algorithm \(ALG \) is \(R \)-competitive if there exists a constant \(C \) such that for each instance \(I \), the algorithm gives

\[
E[ALG(I)] \leq R \cdot OPT(I) + C
\]

Online setting

Jobs come one by one, need to be assigned immediately

Alternative online settings (not today)

- Jobs arrive over time (release times); possibly unknown running times
- Jobs have dependencies, arrive when predecessors completed
Greedy algorithm

- Schedule each job on the least loaded machine.
- Greedy is \((2 - 1/m)\)-competitive.
- Greedy is optimal for \(m = 2, 3\).
Greedy algorithm
- Schedule each job on the least loaded machine.
- Greedy is \((2 - 1/m)\)-competitive.
- Greedy is optimal for \(m = 2, 3\).

Randomized algorithm for two machines
- Keep the ratio of the expected loads \(2 : 1\).
- This is \(4/3\)-competitive and this is optimal.
Greedy algorithm
- Schedule each job on the least loaded machine.
- Greedy is \((2 - 1/m)\)-competitive.
- Greedy is optimal for \(m = 2, 3\).

Randomized algorithm for two machines
- Keep the ratio of the expected loads \(2 : 1\).
- This is \(4/3\)-competitive and this is optimal.

Current best bounds
- Deterministic: between 1.88 and 1.923 for large \(m\)
- Randomized: at least \(e/(e - 1)\) for \(m \to \infty\), at most 1.916
Preemptive Scheduling

Definition

- execution of jobs can be interrupted, moved to a different machine
- schedule: assign at most one job to each machine/time pair; a job cannot run on two machines simultaneously
- jobs come one by one, need to be scheduled completely
Preemptive Scheduling

Definition
- Execution of jobs can be interrupted, moved to a different machine.
- Schedule: assign at most one job to each machine/time pair; a job cannot run on two machines simultaneously.
- Jobs come one by one, need to be scheduled completely.

Optimal algorithm
- Maintain the ratio of loads \(m : (m - 1) \) if possible.
- Competitive ratio \(\frac{1}{1 - \left(1 - \frac{1}{m}\right)^m} \rightarrow \frac{e}{e - 1} \).
Preemptive Scheduling

Definition
- execution of jobs can be interrupted, moved to a different machine
- schedule: assign at most one job to each machine/time pair; a job cannot run on two machines simultaneously
- jobs come one by one, need to be scheduled completely

Optimal algorithm
- maintain the ratio of loads $m : (m - 1)$ if possible
- competitive ratio $1/(1 - (1 - 1/m)^m) \to e/(e - 1)$

Generalizations
- machines with speeds
- semi-online scenarios
Paging — Definitions

Paging (Caching) — basic model

- Environment:
 - k — number of pages in the fast memory
 - $1, \ldots, N$ — pages in the slow memory
- Input: request sequence r_1, r_2, \ldots, of pages
- Output: service — upon a page fault, bring the requested page in the fast memory
- Objective: minimize the number of page faults
Paging — Definitions

Paging (Caching) — basic model

- Environment:
 - k — number of pages in the fast memory
 - $1, \ldots, N$ — pages in the slow memory
- Input: request sequence r_1, r_2, \ldots, of pages
- Output: service — upon a page fault, bring the requested page in the fast memory
- Objective: minimize the number of page faults

Generalizations and variants

- Weighted caching — different pages may have different costs
- File caching — in addition, the requested files may have different size
- restrictions on request sequences
Paging — Results

Deterministic algorithms

- many k-competitive algorithms — FIFO, LRU, FWF
- lower bound of k
Paging — Results

Deterministic algorithms

- many k-competitive algorithms — FIFO, LRU, FWF
- lower bound of k

Randomized algorithms

- MARK
 - H_k-competitive for $N = k + 1$
 - $(2H_k - 1)$-competitive in general
- H_k-competitive algorithms for any N
- lower bound of H_k

$$H_k = 1 + 1/2 + 1/3 + \cdots + 1/k = \Theta(\log k)$$
Algorithm MARK

- Initially, all slots in the fast memory are unmarked
- Upon request r
 - If r is in the fast memory, mark its slot
 - If all slots are marked, unmark all
 - Bring r to a random unmarked slot, mark it
k-server Problem — Definitions

k-server

- **Environment:**
 - \(k \) — number of servers
 - \((M, d)\) — metric on \(N \) points
- **Input:** request sequence \(r_1, r_2, \ldots \), of points in \(M \)
- **Output:** service — upon a request, a server needs to be moved to the requested point
- **Objective:** minimize the total distance of moves of all servers

Generalizes:
- Paging — uniform metric, \(d(x, y) = 1 \) for \(x \neq y \)
- Weighted caching — metric is a star
- Ski rental — 3-point metric

Jiří Sgall

Online Algorithms Lectures 1 and 2
The k-server problem is defined as follows:

Environment:
- k — number of servers
- (M, d) — metric on N points

Input: request sequence r_1, r_2, \ldots, of points in M

Output: service — upon a request, a server needs to be moved to the requested point

Objective: minimize the total distance of moves of all servers

Generalizes:
- Paging — uniform metric, $d(x, y) = 1$ for $x \neq y$
- Weighted caching — metric is a star
- Ski rental — 3-point metric
k-server — Results

Deterministic algorithms

- k-competitive algorithm on special spaces: line, tree, $N = k + 1$, also $k = 2$
- work function algorithm $(2k - 1)$-competitive
- lower bound k for any metric space
Deterministic algorithms

- k-competitive algorithm on special spaces: line, tree, $N = k + 1$, also $k = 2$
- work function algorithm ($2k - 1$)-competitive
- lower bound k for any metric space

Randomized algorithms

- HARMONIC — $O(k2^k)$-competitive, conjectured $O(k^2)$
- $O(\log k)$-competitive alg. for weighted caching
- $O((\log k)^6)$-competitive alg. for any metric
- $\Omega(\log k / \log \log k)$ lower bound for any metric