
Refunctionalization at Work

Olivier Danvy
University of Aarhus, Denmark

(danvy@daimi.au.dk)

MPC’06 July 3, 2006

1

Defunctionalization:
a change of representation

• Enumerate inhabitants of function space.

• Represent function space as a sum type and
a dispatching apply function.

• Transform function declarations / applications
into sum constructions / calls to apply.

2

Example: the factorial function in CPS

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

3

Example: the factorial function in CPS

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

4

The continuation

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

5

All calls are tail calls

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

6

All sub-computations are trivial

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

7

The domain of answers

(* fac : int * (int -> ’a) -> ’a *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

8

The factorial program as a whole

(* fac : int * (int -> int) -> int *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

9

Let us defunctionalize this factorial program.

10

The function space to defunctionalize

(* fac : int * (int -> int) -> int *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

11

Inhabitants?

Who inhabits this function space?

12

The constructors

(* fac : int * (int -> int) -> int *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

13

The consumers

(* fac : int * (int -> int) -> int *)
fun fac (0, k)

= k 1
| fac (n, k)
= fac (n - 1, fn v => k (n * v))

fun main n
= fac (n, fn a => a)

14

The defunctionalized continuation

datatype cont = C0
| C1 of cont * int

fun apply (C0, v)
= v

| apply (C1 (k, n), v)
= apply (k, n * v)

15

Factorial in CPS, defunctionalized

fun fac (0, k)
= apply (k, 1)

| fac (n, k)
= fac (n - 1, C1 (k, n))

fun main n
= fac (n, C0)

16

Correctness

By structural induction on n,
using a logical relation over
the original continuation and

the defunctionalized continuation.

(Those who like this kind of things etc.)

17

Defunctionalization

• Introduced by John Reynolds in “Definitional
Interpreters” (1972)
<www.brics.dk/∼hosc/vol11/>.

• Generalizes Peter Landin’s notion of
closure conversion (1964).

• Less used than closure conversion since.

18

Our thesis

• There is more to defunctionalization
than an encoding, a “firstification.”

• Its left inverse, refunctionalization,
is interesting.

19

Our thesis

• There is more to defunctionalization
than an encoding, a “firstification.”

• Its left inverse, refunctionalization,
is interesting.

Reference: Danvy and Nielsen,

“Defunctionalization at work” at PPDP 2001.
20

Our thesis

• There is more to defunctionalization
than an encoding, a “firstification.”

• Its left inverse, refunctionalization,
is interesting.

Reference: Danvy and Nielsen,

“Defunctionalization at work” at PPDP 2001.

21

Latent question

How does one construct
programming or even semantic artifacts?

(e.g., an abstract machine)

22

Latent question

How does one construct
programming or even semantic artifacts?

(e.g., an abstract machine)

Our point: Defunctionalization

provides elements of answer.

23

The rest of this talk

• A series of examples illustrating
defunctionalization and refunctionalization.

• A characterization of “defunctionalized form.”

• Hints for massaging a program
into defunctionalized form.

24

Exercise: listing prefixes

Write a function
mapping a list to the list of its prefixes
whose last element satisfies a predicate.

Example, for the “always true” predicate:
[1, 2, 3] −→ [[1], [1, 2], [1, 2, 3]]

Example, for the “odd” predicate:
[1, 2, 3, 4, 5] −→ [[1], [1, 2, 3], [1, 2, 3, 4, 5]]

25

On listing prefixes

• finding the first prefix and
finding all prefixes

• use a first-order accumulator and
use a functional accumulator

26

find first prefix a (p, xs)
def
=

letrec visit (nil, a)

= nil

| visit (x :: xs, a)

= let a ′ = x :: a

in if p x

rev (a ′, nil)

else visit (xs, a ′)

in visit (xs, nil)

27

find all prefixes a (p, xs)
def
=

letrec visit (nil, a)

= nil

| visit (x :: xs, a)

= let a ′ = x :: a

in if p x

(rev (a ′, nil)) :: (visit (xs, a ′))

else visit (xs, a ′)

in visit (xs, nil)

28

A functional accumulator

hnil = λxs.xs

hcons = λx.λxs.x :: xs

A novel representation of lists
and its application to the function “reverse”

John Hughes, IPL 22(3):141-144, 1986

29

find first prefix c1 (p, xs)
def
=

letrec visit (nil, k)

= nil

| visit (x :: xs, k)

= let k ′ = k ◦ (hcons x)

in if p x

k ′ nil

else visit (xs, k ′)

in visit hnil

30

find all prefixes c1 (p, xs)
def
=

letrec visit (nil, k)

= nil

| visit (x :: xs, k)

= let k ′ = k ◦ (hcons x)

in if p x

(k ′ nil) :: (visit (xs, k ′))

else visit (xs, k ′)

in visit hnil

31

How related are the two solutions?

Answer #1: they are just different.

32

How related are the two solutions?

Answer #2: one is the defunctionalized version

of the other.

Data type: list; apply function: reverse.

33

Almost in CPS

The functional accumulator
is a delimited continuation.

34

Almost in CPS

The functional accumulator
is a delimited continuation.

...shift and reset.

35

find first prefix c0 (p, xs)
def
=

letrec visit nil

= S k.nil

| visit (x :: xs)

= x :: (if p x then nil else visit xs)

in 〈〈visit xs〉〉

36

find all prefixes c0 (p, xs)
def
=

letrec visit nil

= S k.nil

| visit (x :: xs)

= x :: if p x

S k ′.〈〈k ′ nil〉〉 :: 〈〈k ′ (visit xs)〉〉

else visit xs

in 〈〈visit xs〉〉

37

Connections

0CPS
version

CPS
transf.

// 1CPS
version

CPS
transf.

//

defunctionalization
��

2CPS
version

accumulator-based
version

38

CPS transformation

• Names intermediate results.

• Sequentializes their computation.

• Introduces first-class functions
(continuations).

39

A simple example (1/3)

f x (g x)

40

A simple example (2/3)

f x (g x)

let v1 = f x
v2 = g x
v3 = v1 v2

in v3

41

A simple example (3/3)

f x (g x)

let v1 = f x \k.f x (\v1.
v2 = g x g x (\v2.
v3 = v1 v2 v1 v2 (\v3.

in v3 k v3)))

42

The Fibonacci function (1/3)

fib n
= if n <= 1

then n
else fib(n - 1) + fib(n - 2)

43

The Fibonacci function (2/3)

fib n
= if n <= 1

then n
else let v1 = fib(n - 1)

v2 = fib(n - 2)
in v1 + v2

44

The Fibonacci function (3/3)

fib (n, k)
= if n <= 1

then k n
else fib(n - 1, \v1.

fib(n - 2, \v2.
k (v1 + v2)))

45

The Fibonacci function (4/3)

fib n = let v0 = n <= 1
in if v then n

else let n1 = n - 1
v1 = fib n1
n2 = n - 2
v2 = fib n2

in v1 + v2

46

To CPS or not to CPS?

Q. When should we leave a function
in direct style?

47

To CPS or not to CPS?

Q. When should we leave a function
in direct style?

A. When it is pure and total.

48

To a man with a hammer...

Given [x1, ..., xn] and [y1, ..., yn],
compute [(x1, yn), ..., (xn, y1)].

n is unknown.

49

fun cnv1 (xs,ys) =
let fun walk (nil,a)

= continue (a,ys,nil)
| walk (x::xs,a)
= walk (xs,x::a)

and continue (nil,nil,r)
= r

| continue (x::a,y::ys,r)
= continue (a,ys,(x,y)::r)

in walk (xs,nil) end

50

fun cnv1 (xs,ys) =
let fun walk (nil,a)

= continue (a,ys,nil)
| walk (x::xs,a)
= walk (xs,x::a)

and continue (nil,nil,r)
= r

| continue (x::a,y::ys,r)
= continue (a,ys,(x,y)::r)

in walk (xs,nil) end

51

fun cnv1 (xs,ys) =
let fun walk (nil,a)

= continue (a,ys,nil)
| walk (x::xs,a)
= walk (xs,x::a)

and continue (nil,nil,r)
= r

| continue (x::a,y::ys,r)
= continue (a,ys,(x,y)::r)

in walk (xs,nil) end

52

In defunctionalized form

• the list is the data type

• continue is apply

53

fun cnv2 (xs,ys) =
let fun walk (nil,k)

= k (ys,nil)
| walk (x::xs,k)
= walk (xs,fn (y::ys,r)

=> k (ys,(x,y)::r))
in walk (xs,fn (nil,r) => r) end

...CPS
54

Direct style:

fun cnv3 (xs,ys) =
let fun walk nil

= (ys,nil)
| walk (x::xs)
= let val (y::ys,r) = walk xs
in (ys,(x,y)::r) end

val (nil,r) = walk xs
in r end

55

There and back again

joint work with Mayer Goldberg
ICFP 2002

Fundamenta Informaticae 66(4):397-413, 2005

56

Next: The SECD machine

• Why: it is canonical.

• What: a quadruple
(stack, environment, control, dump).

• How: transitions.

57

State-transition function

• Pre-abstract machine: a transition function
from non-accepting state to accepting or
non-accepting state + a “trampoline” function.

• Abstract machine: a tail-recursive transition
function (the transition function has been
inlined in the trampoline function).

58

The source language

type ide = string
datatype term = LIT of int

| VAR of ide
| LAM of ide * term
| APP of term * term

type program = term (* closed *)

59

The environment

signature ENV =
sig
type ’a env
val mt : ’a env
val ext : ide * ’a * ’a env

-> ’a env
val lookup : ide * ’a env -> ’a

end

60

Expressible and denotable values

datatype value
= INT of int
| SUCC
| CLOSURE of ide * term

* value env

61

Initial environment

val e_init = ext ("succ", SUCC, mt)

62

The four components
• stack : value list

• environment : value env

• control : directive list
datatype directive

= TERM of term
| APPLY

• dump : (stack * environment *
control) list

63

Evaluation by iterated transition
run (v :: nil, e’, nil, nil)
= v

run (v :: nil, e’, nil,
(s, e, c) :: d)

= run (v :: s, e, c, d)

run (s, e, (TERM (LIT n)) :: c, d)
= run ((INT n) :: s, e, c, d)

64

run (s,e,(TERM (VAR x)) :: c,d)
= run ((lookup (x,e)) :: s,e,c,d)

run (s,e,(TERM (LAM (x,t))) :: c,d)
= run ((CLOSURE (x,t,e)) :: s,e,c,d)

run (s,e,(TERM (APP (t0,t1))) :: c,d)
= run (s,e,
(TERM t1) :: (TERM t0) :: APPLY :: c,

d)

65

run (SUCC :: (INT n) :: s, e,
APPLY :: c, d)

= run ((INT (n+1)) :: s, e, c, d)

run ((CLOSURE (x, t, e’)) :: v :: s,
e, APPLY :: c, d)

= run (nil, ext (x, v, e’),
(TERM t) :: nil,
(s, e, c) :: d)

66

Initialization of the SECD machine

fun evaluate0 t
= run (nil,

e_init,
(TERM t) :: nil,
nil)

67

Theorem (Plotkin, 1975)

It works.

68

All in all

The SECD machine is a mouthful:

• Are all cases accounted for?

• Are there any redundant clauses?

69

Disentangling the SECD machine

run_c : S * E * C * D -> value
run_d : value * D -> value
run_t : term *

S * E * C * D -> value
run_a : S * E * C * D -> value

70

Four run functions

• Each function has one induction variable.

• Correctness proven by fixed-point induction.

71

A quote

From Hardy’s “A Mathematician’s Apology.”

72

“there is a very high degree of unexpectedness,
combined with economy and inevitability. The ar-
guments take so odd and surprising a form; the
weapons used seem so childishly simple when
compared with the far-reaching results; but there
is no escape from the conclusion. There are
no complications of detail—one line of attack is
enough in each case;”

73

The disentangled SECD machine

run_c : S * E * C * D -> value
run_d : value * D -> value
run_t : term *

S * E * C * D -> value
run_a : S * E * C * D -> value

74

And then a miracle happens

The disentangled definition is defunctionalized:

• the control and the dump are two data types;

• run c and run d are their apply function.

75

An higher-order counterpart
of the SECD machine

run_t : term *
S * E * C * D -> value

run_a : S * E * C * D -> value

C = S * E * D -> value
D = S -> value

76

Guess what?

The refunctionalized SECD machine
is in CPS.

77

Back to direct style

run_t : term *
S * E * C -> S

run_a : S * E * C -> S

C = S * E -> S

78

Guess what?

The DS’ed refunctionalized SECD machine
uses a control delimiter.

(The body of a lambda-abstraction
is evaluated with an empty control stack.)

79

Back to direct style again

run_t : term *
S * E -> S * E

run_a : S * E -> S * E

...a big-step operational semantics.

80

Another funny thing

Why is the interpreter threading a data stack?

81

Making do without a stack

run_t : term * E -> V * E
run_a : V * V * E -> V * E

...another big-step operational semantics.

82

Guess what?

The result is in closure-converted form
(i.e., in defunctionalized form).

83

Higher-order counterpart

datatype value = INT of int
| SUCC
| FUN of value -> value

84

Guess what?

The evaluator is compositional.

...the valuation function

of a denotational semantics.

85

Denotational content
of the SECD machine

• Environment-based.

• Callee-save.

• With a control delimiter.
(Actually, an unnecessary control delimiter.)

86

fun eval (LIT n, e)
= (INT n, e)

| eval (VAR x, e)
= (lookup (x, e), e)

87

| eval (APP (t0, t1), e)
= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)
in apply (v0, v1, e)
end

88

eval (LAM (x, t), e)
= (FUN (fn v => #1 (

reset (fn () =>
eval (t,

extend (x,
v,
e))))),

e)

89

apply (SUCC, INT n, e)
= (INT (n+1), e)

apply (FUN f, v, e)
= (f v, e)

90

Assessment

• All it took was to disentangle the SECD
transition function.

• The rest (refunctionalization, direct-style
transformation, direct-style transformation with
a control delimiter, data-stack elimination, and
closure unconversion) was mechanical.

91

The essence of the SECD machine

Essential: environment-based and
callee-save.

Inessential: the stack,
the control, and
the dump.

92

Remark

Hindsight is an exact science.

93

What about reversing the
transformation?

We mechanically get back the SECD machine.

94

What about reversing the
transformation?

We mechanically get back the SECD machine.

What about trying with variants?

95

• de Bruijn indices.

• Left-to-right evaluation.

• Proper tail recursion.

• Call by name (use thunks).

• Call by need (thread heap of update thunks).

96

• An SEC machine (no control delimiter).

• An SC machine (no environment).

• A EC machine (no stack).

• A C machine (no environment and no stack).

97

Assessment

evaluator
closure conversion

data-stack introduction

CPS transformation

defunctionalization��

SECD machine

OO

98

Scaling up

From evaluation function to abstract machine

99

A canonical evaluator (caller-save)

datatype term
= IND of int (* de Bruijn index *)
| ABS of term
| APP of term * term

datatype expval
= FUN of denval -> expval
withtype denval = expval

100

fun eval (IND n, e)
= List.nth (e, n)

| eval (ABS t, e)
= FUN (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)
= let val (FUN f) = eval (t0, e)
in f (eval (t1, e))
end

101

John Reynolds’s warning (1972)

Beware of the evaluation order
of the meta-language:

• Call by name yields call by name.

• Call by value yields call by value.

102

fun eval (IND n, e)
= List.nth (e, n)

| eval (ABS t, e)
= FUN (fn v => eval (t, v :: e))

| eval (APP (t0, t1), e)
= let val (FUN f) = eval (t0, e)
in f (eval (t1, e))
end

103

John Reynolds’s warning (1972)

Beware of the evaluation order
of the meta-language:

• Call by name yields call by name.

• Call by value yields call by value.

So we use thunks to simulate call by name.

104

Experiment 1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine

105

Experiment 1: CBN

canonical CBN evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Krivine’s abstract machine

106

Krivine’s abstract machine

The abstract machine
of theoreticians.

(see, eg, Chris Hankin’s textbook
“Lambda calculi, a guide for computer scientists”,
or again Pierre-Louis Curien, Pierre Crégut, etc.)

107

Experiment 2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

abstract machine

108

Experiment 2: CBV

canonical CBV evaluator for λ-terms

closure conversion

CPS transformation

defunctionalization
��

Felleisen et al.’s CEK abstract machine

109

The CEK abstract machine

The simplest abstract machine
of programming-language people.

110

Significance of the result
Krivine’s machine and the CEK machine:

• Probably the two best-known
abstract machines for the λ-calculus.

• Developed and presented independently.

• Yet they are defunctionalized interpreters for
higher-order programming languages.

111

Flashback

John Reynolds’s warning
about evaluation-order independence.

112

Flashback

John Reynolds’s warning
about evaluation-order independence.

Let us use it constructively.

113

A factorization
(Hatcliff & Danvy, 1992–1997)

Λ

CBN
CPS transf.

 A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

thunk transf. //

CBV
CPS transf.

��

114

canonical evaluator

closure conv.
��

CBN
CPS transf.

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

&&MMMMMMMMMMMMMMMMMMM

defunct.
��

defunct.
��

115

canonical evaluator

closure conv.
��

CBN
CPS transf.

xxqqqqqqqqqqqqqqqqqqq CBV
CPS transf.

&&MMMMMMMMMMMMMMMMMMM

defunct.
��

defunct.
��

Krivine’s machine the CEK machine

116

Consequence

Krivine’s machine and the CEK machine
are not just discovered and invented.
They are two sides of the same coin,
which incidentally is the standard one.

117

canonical evaluator

closure conv. (1964)
��

CBN
CPS transf.

(1975)
xxqqqqqqqqqqqqqqqqqqq CBV

CPS transf.

&&MMMMMMMMMMMMMMMMMMM

defunct. (1972)
��

defunct.
��

Krivine’s machine
(1985)

the CEK machine
(1986)

118

Piet Hein’s gentle reminder: T.T.T.

Put up in a place
where it’s easy to see

the cryptic admonishment
T.T.T.

When you feel how depressingly
slowly you climb,

it’s well to remember that
Things Take Time.

119

Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)

120

Models of abstract machines

• Eval-apply (CEK, etc.)

• Push-enter (KAM, etc.)

They appear naturally.

(inline the apply function in CBN)

121

Call by need
(built-in dynamic programming)

Call by need: Call by name +
heap of updatable thunks.

Result: A host of known implementation
techniques and then some.
(see BRICS RS-03-20, IPL 90(5):223-232)

122

Computational effects

We build on Moggi’s insight
as embodied in Wadler’s interpreters.

One generic interpreter,
parameterized by a monad.

The style is in the monad.

123

The point

monadic evaluator + monad
inlining (to make it ‘styled’)

closure conversion

CPS transformation

defunctionalization��

abstract machine

124

Several detailed examples

Tech report BRICS RS-03-35:

• The identity monad.
Result: the CEK machine.

• A lifted state monad.
Result: the CEK machine

with error and state.

125

Stack inspection

• A security mechanism to allow code
with different levels of trust to interact
in the same execution environment.

• Before execution, the source code
is annotated with permissions.

• During execution, the call stack is inspected
to check whether the required permissions
are available.

126

Stack inspection

• See Section 6 in BRICS RS-03-35
(TCS 342(1):149-172, 2005)

• See Section 7 in BRICS RS-05-38
(to appear in TCS)

127

Yet

Not all abstract machines are in defunctionalized
form. Examples:

• The SECD machine with the J operator.

• The CEK machine with dynamic delimited
continuations.

128

Being in defunctionalized form

• several constructions sites

• one consumption site

129

Putting in defunctionalized form

No universal recipe. Handful of tricks:

• introducing auxiliary (first-order) functions

• delaying constructions

• glueing

130

The SECD machine with the J operator

• Landin’s original version (1965)
is incomplete.

• Burge’s complete version (1975)
is not in defunctionalized form.

• Felleisen’s version (1987)
is in defunctionalized form.

131

Felleisen’s version

Refunctionalizing Felleisen’s version
reveals a control delimiter (a “prompt”).

See Danvy and Millikin, “A Rational
Deconstruction of Landin’s J Operator”, IFL 2005
(extended version: BRICS RS-06-04).

132

Dynamic delimited continuations

See Biernacki, Danvy and Millikin, “A Dynamic
Continuation-Passing Style for Dynamic
Delimited Continuations”, BRICS RS-05-16.

133

Conclusion

• Defunctionalization, like the lambda-calculus,
has many applications.

• So does its left-inverse, refunctionalization.

134

Closing remarks

• Evaluation contexts are
defunctionalized continuations.

•

•

135

Closing remarks

• Evaluation contexts are
defunctionalized continuations.

• Reduction contexts are
defunctionalized continuations.

•

136

Closing remarks

• Evaluation contexts are
defunctionalized continuations.

• Reduction contexts are
defunctionalized continuations.

• Most instances of the Zipper are
defunctionalized continuations.

137

Closing remarks

• Evaluation contexts are
defunctionalized continuations.

• Reduction contexts are
defunctionalized continuations.

• Most instances of the Zipper are
defunctionalized continuations.

Thank you.
138

