A Tale of Three Algorithms:
Linear Time Suffix Array Construction

Juha Kärkkäinen
Department of Computer Science
University of Helsinki

10 August, 2006
5th Estonian Summer School in Computer and Systems Science (ESSCaSS’06)
Contents

- Introduction
 - the problem
 - significance
 - history

- Three algorithms from June 2003
 - description in parallel
 - differences and similarities
Suffix array construction

Sort the suffixes of a text lexicographically

- **text** $T = T[0, n) = t_0t_1 \cdots t_{n-1}$
- **suffix** $S_i = T[i, n) = t_it_{i+1} \cdots t_{n-1}$

Output: **suffix array**

- sorted array of suffixes
- suffix S_i is represented by i

```
0 1 2 3 4 5
banana

0 1 2 3 4 5
banana

0 1 2 3 4 5
banana

1 anana

6

2 nana

5 a

3 ana

1 anana

4 na

0 banana

5 a

4 na

2 nana
```
Applications

- Full-text **indexing**
 - binary and backward search

- **Construction** of other index structures
 - suffix tree
 - compressed indexes

- **Text compression**
 - Burrows-Wheeler transform

- **Finding** regularities
 - longest repetition, etc.

- **Comparing** two or more strings
 - \(T = T_1 \# T_2 \)

Many of the applications need the **longest common prefix array**
- computable in linear time \[\text{[Kasai et al., 2001]}\]
Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- many recent suffix array algorithms are
 - efficient in theory and practice
 - different from suffix tree algorithms
 - nontrivial, even surprising
- case in point: linear time construction
Suffix array vs. Suffix tree

- Suffix arrays are no more an inferior simplification of suffix trees
- Many recent suffix array algorithms are:
 - **efficient** in theory and practice
 - **different** from suffix tree algorithms
 - **nontrivial**, even **surprising**
- Case in point: linear time construction

“In 2003 four papers have been published that collectively seem to establish the superiority of the suffix array over the suffix tree”

“Thus, if I were writing Chapter 5 today instead of in 2000/2001, I believe I would take a completely different approach: presenting suffix arrays as the main data structure”

— Bill Smyth: Errata on *Computing Patterns in Strings*
Alphabet

General alphabet
- only character *comparisons* in constant time
- lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet
- constant number of distinct characters

Integer alphabet
- characters are integers from the range $[1, n]$
Alphabet

General alphabet
- only character comparisons in constant time
- lower bound $\Omega(n \log n)$ on suffix sorting

Constant alphabet
- constant number of distinct characters

Integer alphabet
- characters are integers from the range $[1, n]$
- order preserving renaming for other alphabets: sort characters and rename them with ranks
- linear time algorithm for integer alphabet
 \[\implies \text{sorting suffixes is no harder than sorting characters} \]
History of linear time suffix array construction

1973 Suffix tree
 ▶ linear time construction for constant alphabet

1990 Suffix array
 ▶ linear time construction only by conversion from suffix tree

1997 Integer alphabet
 ▶ linear time suffix tree construction for integer alphabet

2003 Direct linear time suffix array construction
 ▶ integer alphabet
Linear time suffix tree construction

- incremental algorithms
 - [Weiner ’73] [McCreight ’76] [Ukkonen ’95]
 - add suffixes/characters one at a time
 - constant alphabet
 - suffix links needed
 - suffix automaton [Blumer et al., ’83]
Linear time suffix tree construction

- divide-and-conquer [Farach ’97]
 1. build suffix tree of $R = [t_0 t_1][t_2 t_3] \ldots$
 2. build odd and even tree
 3. merge them (complicated)

 - integer alphabet
 - suffix links needed in merging

$S = \text{banana}$

$S = \text{banana}$

$R = [\text{ba}][\text{na}][\text{na}]$

$S = \text{banana}$

$S = \text{banana}$

$S = \text{banana}$

$S = \text{banana}$

$S = \text{banana}$
Linear time suffix array construction

- three algorithms in June 2003
 A2: [Kim, Sim, Park & Park., CPM ’03]
 A3: [Kärkkäinen & Sanders, ICALP ’03]
 Ax: [Ko & Aluru, CPM ’03]

- common structure: divide-and-conquer

 0. Choose a sample S of suffixes
 1. Sort the sample S by recursion
 2. Sort other suffixes \bar{S} using sorted S
 3. Merge S and \bar{S}

- rest of talk
 - step-by-step description
 Step 0 \rightarrow Step 3 (\rightarrow Step 1 \rightarrow Step 2)
 - all algorithms in parallel
Time complexity

0. Choose a sample S of suffixes
1. Sort the sample S by recursion
2. Sort other suffixes \tilde{S} using sorted S
3. Merge S and \tilde{S}

- integer alphabet
- excluding recursive call everything is linear
- recursion on text R over integer alphabet with $|R| = |S| \leq 2n/3$
- time complexity $T(n) \leq O(n) + T(2n/3) = O(n)$
Step 0: Compute sample

A2: \(S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes} \) \hfill \text{[Kim & al.]} \\
- sample size \(n/2 \)
Step 0: Compute sample

A2: \(S = \{ S_i \mid i \mod 2 \neq 0 \} = \text{odd suffixes} \)
 \[\text{sample size } n/2 \]
 [Kim & al.]

A3: \(S = \{ S_i \mid i \mod 3 \neq 0 \} = \{ S_1, S_2, S_4, S_5, S_7 \ldots \} \)
 \[\text{sample size } 2n/3 \]
 [K & Sanders]
Step 0: Compute sample

A2: $S = \{S_i \mid i \mod 2 \neq 0\} = \text{odd suffixes}$
 - sample size $n/2$

A3: $S = \{S_i \mid i \mod 3 \neq 0\} = \{S_1, S_2, S_4, S_5, S_7, \ldots\}$
 - sample size $2n/3$

Ax: $S = \text{smaller of } \{S_i \mid S_i < S_{i+1}\} \text{ and } \{S_i \mid S_i > S_{i+1}\}$
 - sample size $\leq n/2$
 - w.l.o.g. assume $S = \{S_i \mid S_i < S_{i+1}\}$
 - $S_i \in S \iff t_i < t_{i+1} \text{ or } t_i = t_{i+1} \text{ and } S_{i+1} \in S$
Step 0: Compute sample: Example

\[
\begin{align*}
S &= \text{banana} \\
0 & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\end{align*}
\]

A2: \(S = \{ S_i \mid i \mod 2 \neq 0 \} \)

\[
\begin{array}{c}
1 \quad \text{anana} \\
3 \quad \text{ana} \\
5 \quad \text{a}
\end{array}
\]

A3: \(S = \{ S_i \mid i \mod 3 \neq 0 \} \)

\[
\begin{array}{c}
1 \quad \text{anana} \\
2 \quad \text{nana} \\
4 \quad \text{na} \\
5 \quad \text{a}
\end{array}
\]

Ax: \(S = \{ S_i \mid S_i < S_{i+1} \} \)

\[
\begin{array}{c}
1 \quad \text{anana} < \text{nana} \\
3 \quad \text{ana} < \text{na}
\end{array}
\]

\[
\begin{align*}
\text{banana} &> \text{anana} \\
\text{nana} &> \text{ana} \\
\text{na} &> \text{a} \\
\text{a} &>
\end{align*}
\]
Step 3: Merge S and \bar{S}

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \quad $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

- very complicated (simulates suffix tree?)

odds tree

```
  5
  3
  1
  a
na
na

```

even tree

```
  6
  4
  2
  0
na
na
banana

```

Proof:

$c_3 = \text{ab} < c_4 = \text{cc} < c_5 = \text{ccd}$

Linear Time Suffix Array Construction – p.14
Step 3: Merge S and \bar{S}

A2: $S = \{S_i | i \mod 2 \neq 0\} \quad \bar{S} = \{S_j | j \mod 2 = 0\}$

- very complicated (simulates suffix tree?)

A3: $S = \{S_i | i \mod 3 \neq 0\} \quad \bar{S} = \{S_j | j \mod 3 = 0\}$

- standard comparison-based merge
- need to compare $S_i \in S$ and $S_j \in \bar{S}$:
 - $i \mod 3 = 1 \implies S_{i+1}, S_{j+1} \in S$
 $$\implies \text{compare } (t_i, S_{i+1}) \text{ and } (t_j, S_{j+1})$$
 - $i \mod 3 = 2 \implies S_{i+2}, S_{j+2} \in S$
 $$\implies \text{compare } (t_i, t_{i+1}, S_{i+2}) \text{ and } (t_j, t_{j+1}, S_{j+2})$$
Step 3: Merge S and \tilde{S}

A2: $S = \{S_i \mid i \text{ mod } 2 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \text{ mod } 2 = 0\}$

 ▶ very complicated (simulates suffix tree?)

A3: $S = \{S_i \mid i \text{ mod } 3 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \text{ mod } 3 = 0\}$

 ▶ standard comparison-based merge
 ▶ need to compare $S_i \in S$ and $S_j \in \tilde{S}$:
 ▶ $i \text{ mod } 3 = 1$ \implies $S_{i+1}, S_{j+1} \in S$
 \implies compare (t_i, S_{i+1}) and (t_j, S_{j+1})
 ▶ $i \text{ mod } 3 = 2$ \implies $S_{i+2}, S_{j+2} \in S$
 \implies compare (t_i, t_{i+1}, S_{i+2}) and (t_j, t_{j+1}, S_{j+2})

Ax: $S = \{S_i \mid S_i < S_{i+1}\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid S_j > S_{j+1}\}$

 ▶ let $S_c = \{S_i \in S \mid t_i = c\}$ and $\tilde{S}_c = \{S_j \in \tilde{S} \mid t_j = c\}$
 ▶ suffix array is $\tilde{S}_a S_a \tilde{S}_b S_b \ldots$
 ▶ proof: $\tilde{S}_c \ni cab < ccc \ldots < cccd \in S_c$
Merging in A2 and A3

Problem: comparing sample and nonsample suffixes

\[\text{red} = \text{sample position} \quad \text{blue} = \text{nonsample position}\]

A2: Comparing odd and even suffixes
- even: \[
\begin{array}{cccccccccc}
\text{even} & \text{red} & \text{blue} & \text{red} & \text{blue} & \text{red} & \text{blue} & \text{red} & \text{blue} & \ldots
\end{array}
\]
- odd: \[
\begin{array}{cccccccccc}
\text{odd} & \text{red} & \text{blue} & \text{red} & \text{blue} & \text{red} & \text{blue} & \text{red} & \text{blue} & \ldots
\end{array}
\]

A3: Comparing 0-suffixes and 1-suffixes
- 0-suffix: \[
\begin{array}{cccc}
\text{0-suffix} & \text{blue} & \text{red}
\end{array}
\]
- 1-suffix: \[
\begin{array}{cccc}
\text{1-suffix} & \text{red} & \text{red}
\end{array}
\]

Comparing 0-suffixes and 2-suffixes
- 0-suffix: \[
\begin{array}{cccc}
\text{0-suffix} & \text{blue} & \text{blue} & \text{blue}
\end{array}
\]
- 2-suffix: \[
\begin{array}{cccc}
\text{2-suffix} & \text{red} & \text{blue} & \text{red}
\end{array}
\]
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots \}$ with $i_1 < i_2 < i_3 < \cdots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \Rightarrow alphabet $[1, |R|]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $R = [t_1t_2][t_3t_4] \ldots$
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \implies alphabet $[1, |R|]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$
 - $R = [t_1 t_2][t_3 t_4] \ldots$

A3: $S = \{S_i \mid i \mod 3 \neq 0\}$
 - $R \neq [t_1][t_2 t_3][t_4][t_5 t_6] \ldots$
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots \}$ with $i_1 < i_2 < i_3 < \ldots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2 - 1}][t_{i_2} \ldots t_{i_3 - 1}][t_{i_3} \ldots t_{i_4 - 1}]\ldots$

2. rename characters of R with ranks \rightarrow alphabet $[1, |R|]$
 - proper prefix problem: $[a][a \ldots] < [ab][\ldots] < [a][c \ldots]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \text{ mod } 2 \neq 0\}$
 - $R = [t_1t_2][t_3t_4]\ldots$

A3: $S = \{S_i \mid i \text{ mod } 3 \neq 0\}$
 - $R \neq [t_1][t_2t_3][t_4][t_5t_6]\ldots$
Step 1: Sort the sample

1. construct text \(R \) whose suffixes exactly represent sample \(S \)
 - let \(S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\} \) with \(i_1 < i_2 < i_3 < \ldots \)
 - natural choice: \(R = [t_{i_1} \ldots t_{i_2-1}] [t_{i_2} \ldots t_{i_3-1}] [t_{i_3} \ldots t_{i_4-1}] \ldots \)

2. rename characters of \(R \) with ranks \(\Rightarrow \) alphabet \([1, |R|]\)
 - proper prefix problem: \([a][a \ldots] < [ab][\ldots] < [a][c \ldots]\)

3. sort suffixes of \(R \) (recursion)

A2: \(S = \{S_i \mid i \mod 2 \neq 0\} \)
 - \(R = [t_1t_2][t_3t_4] \ldots \)

A3: \(S = \{S_i \mid i \mod 3 \neq 0\} \)
 - \(R = [t_1t_2t_3][t_4t_5t_6] \ldots [t_2t_3t_4][t_5t_6t_7] \ldots \)
Step 1: Sort the sample

1. construct text R whose suffixes exactly represent sample S
 - let $S = \{S_{i_1}, S_{i_2}, S_{i_3}, \ldots\}$ with $i_1 < i_2 < i_3 < \cdots$
 - natural choice: $R = [t_{i_1} \ldots t_{i_2-1}][t_{i_2} \ldots t_{i_3-1}][t_{i_3} \ldots t_{i_4-1}] \ldots$

2. rename characters of R with ranks \implies alphabet $[1, |R|]$
 - proper prefix problem: $[a][a \ldots] < [ab][\ldots] < [a][c \ldots]$

3. sort suffixes of R (recursion)

A2: $S = \{S_i \mid i \text{ mod } 2 \neq 0\}$
 - $R = [t_1t_2][t_3t_4] \ldots$

A3: $S = \{S_i \mid i \text{ mod } 3 \neq 0\}$
 - $R = [t_1t_2t_3][t_4t_5t_6] \ldots [t_2t_3t_4][t_5t_6t_7] \ldots$

Ax: $S = \{S_i \mid S_i < S_{i+1}\}$
 - $R = [t_{i_1} \ldots t_{i_2-1}t_{i_2}\infty][t_{i_2} \ldots t_{i_3-1}t_{i_3}\infty][t_{i_3} \ldots t_{i_4-1}t_{i_4}\infty] \ldots$
Step 1: Sort the sample: Example

\begin{align*}
&0 1 2 3 4 5 \\
&S = \text{banana} \\
\end{align*}

\textbf{A2: } S = \{ S_i \mid i \mod 2 \neq 0 \}

\begin{align*}
&1 \quad \text{anana} \\
&3 \quad \text{ana} \\
&5 \quad \text{a} \\
&\text{R} = [\text{an}][\text{an}][\text{a}] \\
&\quad [\text{an}][\text{a}] \\
&\quad [\text{a}] \\
\end{align*}

\textbf{A3: } S = \{ S_i \mid i \mod 3 \neq 0 \}

\begin{align*}
&1 \quad \text{anana} \\
&2 \quad \text{nana} \\
&4 \quad \text{na} \\
&5 \quad \text{a} \\
&\text{R} = [\text{ana}][\text{na}][\text{nan}][\text{a}] \\
&\quad [\text{nan}][\text{a}] \\
&\quad [\text{na}][\text{nan}][\text{a}] \\
&\quad [\text{a}] \\
\end{align*}

\textbf{Ax: } S = \{ S_i \mid S_i < S_{i+1} \}

\begin{align*}
&1 \quad \text{anana} \\
&3 \quad \text{ana} \\
&\text{R} = [\text{ana}]\infty[\text{ana}] \\
&\quad [\text{ana}] \\
\end{align*}
Step 2: Sort other suffixes \bar{S}

- Let $next(\bar{S}) = \{S_{j+1} \mid S_j \in \bar{S}\}$ and $\bar{S}_c = \{S_j \in \bar{S} \mid t_j = c\}$

- For each $S_i \in next(\bar{S})$ in sorted order
 - insert S_{i-1} into \bar{S}_c with $c = t_{i-1}$

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \hspace{1cm} $\bar{S} = \{S_j \mid j \mod 2 = 0\}$

- $next(\bar{S}) = S$
Step 2: Sort other suffixes \tilde{S}

- Let $next(\tilde{S}) = \{S_{j+1} \mid S_j \in \tilde{S}\}$ and $\tilde{S}_c = \{S_j \in \tilde{S} \mid t_j = c\}$
- For each $S_i \in next(\tilde{S})$ in sorted order
 insert S_{i-1} into \tilde{S}_c with $c = t_{i-1}$

A2: $S = \{S_i \mid i \mod 2 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 2 = 0\}$
 - $next(\tilde{S}) = S$

A3: $S = \{S_i \mid i \mod 3 \neq 0\}$ \hspace{1cm} $\tilde{S} = \{S_j \mid j \mod 3 = 0\}$
 - $next(\tilde{S}) \subset S$
Step 2: Sort other suffixes \(\tilde{S}\)

- Let \(\text{next}(\tilde{S}) = \{S_{j+1} \mid S_j \in \tilde{S}\}\) and \(\tilde{S}_c = \{S_j \in \tilde{S} \mid t_j = c\}\)

- For each \(S_i \in \text{next}(\tilde{S})\) in sorted order
 - insert \(S_{i-1}\) into \(\tilde{S}_c\) with \(c = t_{i-1}\)

A2: \(S = \{S_i \mid i \mod 2 \neq 0\}\) \hspace{1cm} \(\tilde{S} = \{S_j \mid j \mod 2 = 0\}\)
- \(\text{next}(\tilde{S}) = S\)

A3: \(S = \{S_i \mid i \mod 3 \neq 0\}\) \hspace{1cm} \(\tilde{S} = \{S_j \mid j \mod 3 = 0\}\)
- \(\text{next}(\tilde{S}) \subset S\)

Ax: \(S = \{S_i \mid S_i < S_{i+1}\}\) \hspace{1cm} \(\tilde{S} = \{S_j \mid S_j > S_{j+1}\}\)
- scan suffix array \(\epsilon\tilde{S}_aS_a\tilde{S}_bS_b\ldots\)
- if suffix \(S_i\) is in \(\text{next}(\tilde{S})\) insert \(S_{i-1}\)
- when scan reaches \(S_j \in \tilde{S}\) it is already in place because \(S_{j+1} < S_j\)
// compare pairs and triples
inline bool leq(int a1, int a2, int b1, int b2)
{ return(a1 < b1 || a1 == b1 && a2 <= b2); }
inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3)
{ return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3)); }

// radix sort (one pass)
static void radixPass(int* a, int* b, int* r, int n, int K)
{
 // count occurrences
 int* c = new int[K + 1]; // counter array
 for (int i = 0; i <= K; i++) c[i] = 0; // reset counters
 for (int i = 0; i < n; i++) c[r[a[i]]]++;
 for (int i = 0, sum = 0; i <= K; i++) // exclusive prefix sums
 { int t = c[i]; c[i] = sum; sum += t; }
 // sort
 for (int i = 0; i < n; i++) b[c[r[a[i]]]] = a[i];
delete [] c;
Implementing A3: Main function

// compute suffix array of s
// require s[n]=s[n+1]=s[n+2]=0, n>=2
void suffixArray(int* s, int* SA, int n, int K) {

 // initialize
 int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
 int* s12 = new int[n02 + 3]; s12[n02]=s12[n02+1]=s12[n02+2]=0;
 int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
 int* s0 = new int[n0];
 int* SA0 = new int[n0];

 Step 0: Compute sample
 Step 1: Sort sample
 Step 2: Sort other suffixes
 Step 3: Merge

 // clean up
 delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
}
Implementing A3: Step 0: Compute sample

 // compute sample
 for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++] = i;
Implementing A3: Step 1: Sort the sample

// sort supercharacters (triples)
radixPass(s12, SA12, s+2, n02, K);
radixPass(SA12, s12, s+1, n02, K);
radixPass(s12, SA12, s, n02, K);

// construct recursive text
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n02; i++) {
 if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2)
 name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
 if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // first half
 else { s12[SA12[i]/3 + n0] = name; } // second half
}

if (name < n02) { // recurse if all supercharacters are not unique
 suffixArray(s12, SA12, n02, name);
 for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;
} else // end of recursion: supercharacters are all unique
 for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
Implementing A3: Step 2: Sort other suffixes

// construct nonsample in order of next(nonsample)
for (int i=0, j=0; i < n02; i++)
 if (SA12[i] < n0) s0[j++] = 3*SA12[i];
// sort stably by first character
radixPass(s0, SA0, s, n0, K);
Implementing A3: Step 3: Merge

// merge sample and nonsample suffixes
for (int p=0, t=n0-n1, k=0; k < n; k++) {
#define GetI() (SA12[t] < n0 ? SA12[t]*3+1 : (SA12[t]-n0)*3+2)
 int i = GetI();
 int j = SA0[p];
 if (SA12[t] < n0 ? // compare
 leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :
 leq(s[i],s[i+1],s12[SA12[t]-n0+1], s[j],s[j+1],s12[j/3+n0]))
 { // sample suffix is smaller
 SA[k] = i; t++;
 if (t == n02) // done --- only nonsample suffixes left
 for (k++; p < n0; p++, k++) SA[k] = SA0[p];
 } else { // nonsample suffix is smaller
 SA[k] = j; p++;
 if (p == n0) // done --- only sample suffixes left
 for (k++; t < n02; t++, k++) SA[k] = GetI();
 }
}
Concluding remarks

► Implementation
 • A3 and Ax are practical algorithms
 • can be made space-efficient

► Other models of computation
 • A3 is easily parallelizable and externalizable
 • improved BSP and EREW-PRAM algorithms [K & Sanders, ’03]
 • fast external memory implementation [Dementiev & al, ’05]

► Related construction algorithms
 • $\mathcal{O}(vn + n \log n)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
 fast and space-efficient in practice $(v \in [3, n])$ [Burkhardt & K, ’03]
 • $\mathcal{O}(vn)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space [K & Sanders]
Open problems

- Suffix array has emerged from the shadow of suffix tree
 - several recent algorithms
 - missing algorithms?

- I still don’t understand suffix arrays!
 - surprising algorithms
 - common combinatorial principles?
 - more surprises coming?
Difference cover samples

= sample position = nonsample position

A3: \[S = \{ S_i \mid i \mod 3 \in \{1, 2\} \} \]

- 0-suffix
- 1-suffix
- 2-suffix

A7: \[S = \{ S_i \mid i \mod 7 \in \{3, 5, 6\} \} \]

- 0-suffix
- 1-suffix
- 2-suffix
- 3-suffix
- 4-suffix
- 5-suffix
- 6-suffix
Difference cover samples

$D \subseteq [0, v)$ is a **difference cover** modulo v if

$$\{i - j \mod v \mid i, j \in D\} = [0, v)$$

- $D = \{1, 2\}$ is a difference cover modulo 3
- $D = \{3, 5, 6\}$ is a difference cover modulo 7
- $D = \{1\}$ is **not** a difference cover modulo 2

Algorithms

- A3
 - $\mathcal{O}(vn + n \log n)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
 [Burkhardt & K, ’03]
 - $\mathcal{O}(vn)$ time, $\mathcal{O}(n/\sqrt{v})$ extra space
 [K & Sanders, ??]