A Vademecum to Continuations

Olivier Danvy

BRICS, University of Aarhus, Denmark
(danvy@brics.dk)
Continuations

- What?
- What for?
Continuations represent
“the rest of the computation”
Example: denotational semantics

- Original goal: syntax-directed encoding in the λ-calculus.
- Denotational assumption: the encoding is compositional.
- Fine for expressions and sequence, but what about jumps?
Direct semantics of commands

\[c \in \text{Com} ::= \text{skip} \mid c_1 ; c_2 \mid L : c \mid \text{goto } L \mid \ldots \]

\[C : \text{Com} \rightarrow \text{Env} \rightarrow \text{Sto} \rightarrow \text{Sto} \]

\[C[\text{skip}]\rho\sigma = \sigma \]

\[C[c_1; c_2]\rho\sigma = C[c_2]\rho(C[c_1]\rho\sigma) \]

\[C[\text{goto } L]\rho\sigma = ??? \]
A catalyst (ca. 1970)

Strachey tells Wadsworth about Mazurkiewicz’s ‘tail functions’.
The denotation of a label should be such a tail function.

Applying this tail function would continue after the label and yield the final answer.

A more fitting name would thus be “continuation”.

Tilt!
Continuation semantics of commands

\[C : \text{Com} \rightarrow \text{Env} \rightarrow \text{Sto} \rightarrow (\text{Sto} \rightarrow \text{Ans}) \rightarrow \text{Ans} \]

\[C[\text{skip}] \, \rho \, \sigma \, \kappa \, = \, \kappa \, \sigma \]

\[C[c_1; c_2] \, \rho \, \sigma \, \kappa \, = \, C[c_1] \, \rho \, \sigma \, (\lambda \sigma'.C[c_2] \, \rho \, \sigma' \, \kappa) \]

\[C[\text{goto } L] \, \rho \, \sigma \, \kappa \, = \, \rho \, L \, \sigma \]
Other control operators

Now the denotation of other control operators is simple:

\[C[\text{halt}] \rho \sigma \kappa = \sigma \]

if \(\text{Ans} = \text{Sto} \).
All in all

Direct semantics: $\text{Sto} \rightarrow \text{Sto}$

A command is a store transformer.

Continuation semantics:

\[
\begin{cases}
\text{Sto} \rightarrow (\text{Sto} \rightarrow \text{Ans}) \rightarrow \text{Ans} \\
(\text{Sto} \rightarrow \text{Ans}) \rightarrow \text{Sto} \rightarrow \text{Ans}
\end{cases}
\]

A command is a continuation transformer.
Continuation semantics for expressions

Given $t ::= b \mid t_1 \rightarrow t_2$,
we can embed types as follows:

$$[t] = ([t]' \rightarrow o) \rightarrow o$$

$$[b]' = b$$

$$[t_1 \rightarrow t_2]' = [t_1]' \rightarrow [t_2] \text{ call by value}$$

$$[t_1 \rightarrow t_2]' = [t_1] \rightarrow [t_2] \text{ call by name}$$
Connection with logic (1990)

Writing \(\neg t \) instead of \(t \rightarrow o \), Griffin and Murthy recognized a double-negation translation.
To sum up: principles

- A continuation represents the rest of a computation.
- Useful for modelling control in denotational semantics.
- Connected to logic.
“Vade mecum” = “go with me” in Latin.
The many discoveries of continuations

John Reynolds
<http://www.brics.dk/~hosc>
Applications to functional programming

Rather than writing functions of type $t_1 \to t_2$

one can write continuation-passing functions of type

$$t_1' \to (t_2' \to o) \to o$$

Result: continuation-passing style (CPS).
Why CPS?

- Format.
- Expressive power.
The format of CPS

- All subterms are trivial.
- All calls are tail calls.

A compiler writer is very happy about that (Steele, Appel, Morrisett).
But is this format intrinsic to CPS?

- No: cf., e.g, Moggi’s monadic normal forms (which were also multiply discovered).
- MLton.
- Monadic normal forms are in bijective correspondence with CPS.
Example: the factorial function

(* fac : int -> int *)
fun fac 0
 = 1
| fac n
 = n * (fac (n - 1))

fun main n
 = fac n
CPS transformation

- Names intermediate results.
- Sequentializes their computation.
- Introduces first-class functions (continuations).
Example: the factorial function in CPS

(* fac : int * (int -> 'a) -> 'a *)

fun fac (0, k)
 = k 1

| fac (n, k)
 = fac (n - 1, fn v => k (n * v))

fun main n
 = fac (n, fn a => a)
A more substantial case

Consider a local function: \(b_0 \rightarrow (b_1 + b_2) \)

In CPS: \(b_0 \rightarrow ((b_1 + b_2) \rightarrow o) \rightarrow o \)
A more substantial case

Consider a local function: $b_0 \rightarrow (b_1 + b_2)$

In CPS: $b_0 \rightarrow ((b_1 + b_2) \rightarrow o) \rightarrow o$

Or again: $b_0 \rightarrow (b_1 \rightarrow o) \times (b_2 \rightarrow o) \rightarrow o$
Exercise: Calder mobiles

- Consider a binary tree of natural numbers.
- Compute whether it is well balanced.
- Do it \textit{in one traversal}.
To sum up: practice

- CPS is useful in compilers.
- CPS is useful for functional programming.
In other words

Continuations are worth studying a bit more.

1. Definitional interpreters.

2. Expressive power (deletion vs. retention).

3. Formalization.
1: Definitional interpreters

Task: write a definitional self-interpreter.

Question: relation between defining evaluation order and defined evaluation order?

Example: eval \(\text{apply}(e_0, e_1)\)

\[= \text{apply (eval } [e_0], \text{ eval } [e_1])\]
Reynolds’s solution (1972)

Constrain the text of the definitional interpreter so that CBN and CBV cannot be distinguished.

Key point: actual parameters should be “trivial” (their evaluation should always converge).

The interpreter is in CPS.
2: More expressive power?

Procedure calls and returns work LIFO.

Call frames can be allocated:

- either in the heap (retention model),
- or on a stack (deletion model).

Is retention more expressive than deletion?
Example

Consider:

```
let val x = 10
in fn y => x + y end
```

What is the extent of \(x \)?
Fischer (1972)

A translation of any program from a heap-based implementation to a stack-based one.

Key point: define procedures that never return, but that call a continuation instead.

CPS again.
Vademecum for the CPS transformation

- The varieties of the CPS transformations: there is at least one per evaluation order.
- Plotkin’s three key theorems:
 simulation, indifference, and translation.
Call-by-name CPS transformation

\[
[x] = \lambda k.xk \quad \text{– not just } x \\
[\lambda x.e] = \lambda k.k(\lambda x. [e]) \\
[e_0 e_1] = \lambda k. [e_0](\lambda v_0. v_0[e_1]k)
\]
Call-by-value CPS transformation
“with continuations last” (Plotkin)

\[
[x] = \lambda k. kx
\]
\[
[\lambda x.e] = \lambda k.k(\lambda x.[e])
\]
\[
[e_0 e_1] = \lambda k.[e_0](\lambda v_0.[e_1](\lambda v_1.v_0v_1k))
\]
Call-by-value CPS transformation
“with continuations first” (Fischer)

\[[x] = \lambda k. kx \]
\[[\lambda x.e] = \lambda k.k(\lambda k.\lambda x.[e]k) \]
\[[e_0 e_1] = \lambda k.[e_0](\lambda v_0.[e_1](\lambda v_1.v_0 k v_1)) \]
And many more

- call by value à la Algol 60 (Reynolds)
- left-to-right and right-to-left call by value
- mixed eval. orders (Danvy, Hatcliff, Nielsen)
- etc.

And their assorted double-negation translations (Murthy).
A factorization
(Hatcliff & Danvy, 1992-1997)
Plotkin (1975)

Simulation: evaluating a CPS’ed term gives the result of the original term, CPS’ed.

Indifference: a CPS term can be evaluated independently of the evaluation order.

Translation: relation between equational theories of terms and of CPS’ed terms.
Actual and administrative reductions

Example:

\[
[\lambda x. x x]
\]

\[
= \lambda k.k \lambda x.\lambda k.(\lambda k.k x)
\]

\[
(\lambda v_0.(\lambda k.k x)(\lambda v_1.v_0 v_1 k))
\]

actual red. \hspace{1cm} \text{CPS transf.} \hspace{1cm} \text{actual + adm. red.}
The “one-pass” approach

A CPS transformation performing administrative reductions “at transformation time”

(Appel, Danvy and Filinski, Wand, ca. 1990)
The direct-style transformation

\[
\text{DS} \xrightarrow{\text{CPS transf.}} \text{CPS} \xleftarrow{\text{DS transf.}}
\]

- Requires occurrence conditions over CPS programs (Danvy, Pfenning).
- Gave rise to INCLL (Pfenning, Polakow).
Control operators

Goal: to import the extra expressive power of continuations from CPS into direct style.

Examples: goto, call/cc.

N.B. Interesting typing consequences (Griffin).
Application to PE (Danvy and Lawall)

\[
\begin{align*}
\text{DS } &+ \text{ call/cc} \xrightarrow{\text{CPS transf.}} \text{CPS} \\
\text{Normalization} \\
\text{DS } &+ \text{ call/cc} \xleftarrow{\text{DS transf.}} \text{CPS}
\end{align*}
\]
Delimited continuations

Idea: to define the rest of a sub-computation.

- prompts (Felleisen)
- iterated CPS transformation (Danvy and Filinski)
- etc.
Applications of delimited continuations

• Convenient for expressing backtracking.

• Instrumental for simulating monads (Filinski).

• Useful for type-directed partial evaluation.

• Logical contents currently explored by Kamenaya: there is more to delimited continuations than classical logic.
Other applications of continuations

- Reasoning about continuations (Felleisen, Thielecke).
- Program transformation (Wand).
- Compiler derivation (Clinger, Wand).
- Compiler generation (Appel, Oliva, Patterson, Wand).
More applications of continuations

- Program analysis (Nielson, Shivers, Consel and Danvy, Sabry and Felleisen, Damian and Danvy).
- Partial evaluation (Consel and Danvy, Bondorf, Lawall and Danvy).
Even more applications of continuations

- Multiprocessing (Wand).
- Coroutines (Haynes, Friedman).
- Operating-systems services (Mach 5.0).
- Parallelism (Le Métayer and Giorgi, Hieb and Dybvig, Moreau).
Implementing first-class continuations

A large body of work (Clinger et al., 1998).
Continuations as time passes by

1970’s: Continuations storm in.

1980’s: Continuations are explored, esp. in the Scheme community with call/cc.

1990’s: A number of PhD theses are dedicated to continuations.
PhD theses

• Murthy (1991): CPS transformations are double-negation translations.

• Lawall (1994): CPS and DS transformations.

• Hatcliff (1994): the structure of CPS.

• Sabry (1994): equational models of CPS.
• Sitaram (1994): continuations and programming-language design.

• Moreau (1994): continuations and parallelism.

• Filinski (1996): continuations and monads.

• Thielecke (1997): categorical structure of CPS.

• Laird (1999): continuations and full abstraction.
• Führmann (2000): categorical models of control.

• Polakow (2001): INCLL.

• Berdine (2004): linear types.

...and probably more.
Milne and Mosses (70's)

“With continuation-passing and state-passing we felt ready to conquer the world.”
Scheme community (80’s)

“With call/cc and set!,
we can conquer the world.”
Moggi and Filinski (90’s)

“Computational monads are the world.”

“Call/cc and set! can implement monads.”
Defunctionalization
(a change of representation)

- Enumerate inhabitants of function space.
- Represent function space as a sum type and a dispatching apply function.
- Transform function declarations / applications into sum constructions / calls to apply.
Defunctionalization example

(* fac : int * (int -> 'a) -> 'a *)

fun fac (0, k)
 = k 1

| fac (n, k)
 = fac (n - 1, fn v => k (n * v))

fun main n
 = fac (n, fn a => a)
The whole program

```haskell
(* fac : int * (int -> int) -> int *)

fun fac (0, k)
    = k 1

| fac (n, k)
    = fac (n - 1, fn v => k (n * v))

fun main n
    = fac (n, fn a => a)
```

The function space to defunctionalize

(* fac : int * (int -> int) -> int *)
fun fac (0, k) = k 1
| fac (n, k) = fac (n - 1, fn v => k (n * v))

fun main n = fac (n, fn a => a)
The constructors

\[
(* \text{ fac : int } \times (\text{ int } \to \text{ int}) \to \text{ int } *)\]

fun fac (0, k)
 = k 1
|
fun fac (n, k)
 = fac (n - 1, \text{ fn } v \to k (n \times v))

fun main n
 = fac (n, \text{ fn } a \to a)\]
The consumers

(* fac : int * (int -> int) -> int *)

fun fac (0, k)
 = k 1

| fac (n, k)
 = fac (n - 1, fn v => k (n * v))

fun main n
 = fac (n, fn a => a)
The defunctionalized continuation

datatype cont = C0
 | C1 of cont * int

fun apply (C0, v)
 = v
 | apply (C1 (k, n), v)
 = apply (k, n * v)
fun fac (0, k)
 = apply (k, 1)
| fac (n, k)
 = fac (n - 1, C1 (k, n))

fun main n
 = fac (n, C0)
Correctness

By structural induction on n, using a logical relation over the original continuation and the defunctionalized continuation.

(Those who like this kind of things etc.)
To a man with a hammer...

Given \([x_1, \ldots, x_n]\) and \([y_1, \ldots, y_n]\),
compute \([(x_1, y_n), \ldots, (x_n, y_1)]\).

\(n\) is unknown.
fun cnv1 (xs, ys) =
let fun walk (nil, a)
 = continue (a, ys, nil)
 | walk (x::xs, a)
 = walk (xs, x::a)
and continue (nil, nil, r)
 = r
 | continue (x::a, y::ys, r)
 = continue (a, ys, (x, y)::r)
in walk (xs, nil) end
fun cnv2 (xs, ys) =
let fun walk (nil, k)
 = k (ys, nil)
| walk (x::xs, k)
 = walk (xs, fn (y::ys, r)
 => k (ys, (x, y)::r))
in walk (xs, fn (nil, r) => r) end
fun cnv3 (xs,ys) =
let fun walk nil
 = (ys,nil)
 | walk (x::xs)
 = let val (y::ys,r) = walk xs
 in (ys,(x,y)::r) end
val (nil,r) = walk xs
in r end
There and back again

joint work with Mayer Goldberg

ICFP 2002, Fundamenta Informaticae 2005
To be continued

Thank you.