MAIN TRACK:

LOGICS OF AGENCY

LOGICS OF KNOWLEDGE AND BELIEF

- logics of knowledge = epistemic logics
- logics of belief = doxastic logics

- Knowledge (naively) understood as true belief.

- Main problem with simplistic approaches: logical omniscience (agents are assumed to have perfect reasoning capability).
Traditional approach

(Hintikka, ...)

- Use the multi-modal logic determined by all reflexive (knowledge) \([\text{serial} (\text{belief})]\), transitive, euclidean multi-relational frames (one relation \(R(i)\) for each agent \(i \in I\)).

- This is (soundly & completely) axiomatized by \(K(I,45) = \bigcup_{i \in I} [K(I,45)_{\text{i} \in I}].\)

- Define \(K_i A \equiv [B, \text{A}]\) (i knows i believes) that \(A\) as \([i] A.\)

reflexivity: \[T:\]

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

seriality: \[D:\]

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

knowledge axiom:

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

what an agent knows, is true

belief axiom:

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

\(\sim_i\) \(\sim_i\) \(\sim_i\) \(\sim_i\)

an agent does not believe the negation of what it believes

knowledge - consistent with the reality

beliefs - internally consistent
transitivity: \[\langle \varepsilon \rangle A \sqsubseteq [\varepsilon] \langle i\rangle A \]

Euclidean: \[\langle \varepsilon \rangle A \sqsubseteq [\varepsilon] \langle i\rangle A \quad \langle [\varepsilon] A \Rightarrow [\varepsilon] \langle i\rangle A \rangle \]

Positive introspection:
- an agent knows [believes]
- it knows [believes]
- what it knows [believes]

Negative introspection:
- an agent knows [believes]
- it doesn't know [believes]
- what it doesn't know [believes]

(Do we always want it??)

Logical omniscience

K:
\[[\varepsilon] (A \rightarrow B) \Rightarrow [\varepsilon] A \rightarrow [\varepsilon] B \]

an agent's knowledge [belief] is closed under implications it knows [believes]

RN:
\[\frac{A}{[\varepsilon] A} \]

an agent knows [believes] all tautologies
Example (of the power of these things!):

Suppose
\[K_a q \]
Then
\[K_a K_a q \] Alice knows she doesn't know that \(q \) (since she can do neg. introspection).
\[K_a K_b K_a q \] Alice knows that Bob doesn't know she knows that \(q \) (Bob's knowledge is consistent with the reality to Alice's knowledge).
\[K_a K_b K_b K_a q \] Alice knows that Bob in fact knows he doesn't know she knows that \(q \) (Alice knows Bob can do neg. introspection).

Common knowledge [belief]

- Introduce a pseudo-agent \(c \) ("any fool").

- Add this frame condition:
 For any \(w, w' \in W \),
 \[w R(c) w' \] iff, for some \(\langle w_0, \ldots, w_n \rangle \in W, i_0, \ldots, i_n-1 \in I, w = w_0, w_0 R(i_0) w_1, \ldots, w_{n-1} R(i_{n-1}) w_n, w_n = w' \]

- Define \(K_c A \) [\(B_c A \)] (it is commonly known [believed] that \(A \), any fool knows [believes]) that \(A \) as \([c] A \).
c behaves quite well as an agent:

From the assumption that all R_i's (i.e. I) are reflexive (serial), it follows that so is $R(c)$; besides $R(c)$ is clearly transitive.

Check this!

- The naive logic of knowledge [belief] with "any fool" is (soundly & completely) axiomatized by $K_i(T4S)_i \in I$ [$K_i(D4S)_i \in I$] plus

\[
[c]A \Rightarrow \land_{i \in I} [i](A \land [c]A)
\]

\[
B \Rightarrow \land_{i \in I} [i](A \land B)
\]

\[
| B \Rightarrow [c]A
\]
Distributed knowledge

- Introduce a pseudo-agent d ("a wise man").

- Add the frame condition:
 for any $w, w' \in W$,
 \[wR(d)w' \iff \text{for all } i \in I, \ wR(i)w', \]

- Define \(K_d A \) (a wise man would know that A) as \([d] A\).

- d behaves very well as an agent wrt. knowledge:
 From the assumption that all R_i's (i.e. I) are reflexive, transitive and euclidean, it follows that so is $R(d)$.

- The naive logic of knowledge with "a wise man" is (soundly & completely) axiomatized by
 \(K_i u[d] (T45) \) for $i \in I \cup \{d\}$ plus
 \[[i] A \supset [d] A, \]
 if $|I| > 2$.
Other approaches

- We shall consider three "fine" approaches:
 - Fagin and Halpern's logic of (general) awareness;
 - Fagin and Halpern's logic of local reasoning;
 - Lewisque's logic of only-believing (Duc's version of this).

Logic of (general) awareness

(Fagin, Halpern)

- In addition to the usual notion of implicit belief, captures a notion of explicit belief based on the notion of awareness.

Syntax

Assumed are a denumerable set $\text{FmA} = \{ p_0, p_1, \ldots \}$ of prop. letters and a (non-empty) set I of agent identifiers. The set FmA of formulas is defined as follows:

- If $p \in \text{FmA}$, then $p \in \text{FmA}$;
- $T, \bot \in \text{FmA}$;
- If $A \in \text{FmA}$, then $\neg A \in \text{FmA}$;
- If $A \in \text{FmA}$, then $\forall A \in \text{FmA}$.

- If $A \in \text{FmA}$, then $A; A$ (it's aware of A);
- \mathbf{B}^i_A (i believes A implicitly), $\mathbf{B}^{\exp}_i A$ (i believes A explicitly) $\in \text{FmA}$.
Strategies for (general) awareness

A structure for (general) awareness is a quadruple \(M = (W, R, A, V) \) where
* \(W \) is a non-empty set of worlds;
* \(R \in \text{[I\rightarrow P(W \times W)]} \) is a function from agent identifiers to \(\text{relational} \) (relations between \(W \) and \(W \) (accessibility relations);
* \(A \in \text{[I\rightarrow [\text{FmA} \rightarrow P(W)]]} \) is a function from agent identifiers to \(\text{functions} \) (functions) from \(W \) to \(\text{sets of \(W \)} \) (functions);
* \(V \in \text{[FmA} \rightarrow P(W) \] \) is a function from prop. letters to \(\text{sets of \(W \)} \) (valuation).

A formula is a tautology in the logic of (general) awareness, if it is valid in all structures for (general) awareness.

Satisfaction in structures for (general) awareness

Given a structure \(M = (W, R, A, V) \) for (general) awareness, the interpretation function \(\text{[I\rightarrow G]} \in \text{[FmA} \rightarrow P(W) \] \) is defined as follows (for we \(\text{[I\rightarrow G]} \) M):
* If p \in \text{FmA}, then: \(k^M_A \text{ p if } p \in V(p) \);
* \(k^M_A \text{ T if } \text{p is true} \);
* \(k^M_A \text{ F if } \text{p is false} \);
* \(k^M_A \text{ if } \text{not } k^M_A \);
* \(k^M_A \text{ if } \text{A}; A \);
* \(k^M_A \text{ if } \text{A}; A \text{ for any } w \in W \text{ s.t. } w R; w', k^M_A \);
* \(k^M_A \text{ if } \text{A}; k^M_A \text{ if } \text{A}; A \text{ and } \text{A}; A \text{ for any } w \in W \text{ s.t. } w R; w', k^M_A \).
Observations

The following hold for any structure M for (general) awareness:

1. $\models^M B_i \exp A \equiv A; A \land B; A$

2. $\models^M B_i \exp (A \land B) \equiv (B_i \exp A \land B \implies B_i \exp B)$

3. If $\models^M A_i$, then $\models^M A; A \land B; A$

4. $\models^M \neg (B_i \exp A \land B_i \neg A)$

5. $\models^M B_i \exp A \land A; B_i \exp A \implies B_i \exp B_i \exp A$

6. $\models^M \neg B_i \exp A \land A; B_i \exp A \implies B_i \exp \neg B_i \exp A$

Axiomatization

The logic of (general) awareness is (soundly and completely axiomatized by K_i plus

$$B_i \exp A \equiv A; A \land B; A$$
Logic of local reasoning (Fagin, Halpern)

- Agents as societies of minds, each mind with its own beliefs, possibly contradicting those of the fellow minds.

Syntax

Assumed again are a denumerable set \(\text{Fma} = \{ p, p', p'' \} \) of prop letters and a (non-empty) set \(\text{I} \) of agent identifiers. The set \(\text{Fma} \) of formulas is defined as follows:

- if \(p \in \text{Fma} \), then \(p \in \text{Fma} \);
- \(T, I \in \text{Fma} \);
- if \(A \in \text{Fma} \), then \(\neg A \in \text{Fma} \);
- \ldots
- if \(A \in \text{Fma} \), then \(B_i A \) (i believes A in some frame of mind), \(B_i \text{imp} A \) (i believes A implicitly, "between" its different frames of mind)
Structures for local reasoning

A structure for local reasoning is a triple \(M = (W, N, V) \) where:

* \(W \) is a non-empty set of worlds;
* \(N : \{ 1 \rightarrow \mathcal{P}(W \times \mathcal{P}(W)) \} \) is a function from agent identifiers to relations between worlds and sets of worlds (neighborhood relations), such that:
 * for any \(w \in W \), there exists an \(X \in W \) st \(wN X \);
 * for no \(w \in W \), \(wN \emptyset \);
* \(V \in \{ \text{true}, \text{false} \} \) is a function from agent identifiers to subsets of \(W \) (valuation).

Satisfaction in structures for local reasoning

Given a structure \(M = (W, N, V) \) for local reasoning, the interpretation function \(\llbracket \cdot \rrbracket^M : \{ \text{true}, \text{false} \} \rightarrow \mathcal{P}(W) \) for this structure is defined as follows:

\(\llbracket \phi \rrbracket^M \) (short for \(\llbracket \phi \rrbracket^M \)):

* If \(\phi \in \text{true} \), then: \(\llbracket \phi \rrbracket^M \) is true;
* If \(\phi \in \text{false} \), then: \(\llbracket \phi \rrbracket^M \) is false;
* \(\llbracket p \rrbracket^M \) is true if \(\phi \in V(p) \);
* \(\llbracket \neg A \rrbracket^M \) is true if \(\llbracket A \rrbracket^M \) is false;
* \(\llbracket A \lor B \rrbracket^M \) is true if \(\llbracket A \rrbracket^M \) or \(\llbracket B \rrbracket^M \) is true;
* \(\llbracket A \land B \rrbracket^M \) is true if \(\llbracket A \rrbracket^M \) and \(\llbracket B \rrbracket^M \) are true;
* \(\llbracket A \rightarrow B \rrbracket^M \) is true if \(\llbracket A \rrbracket^M \) is false or \(\llbracket B \rrbracket^M \) is true;
* \(\llbracket A \iff B \rrbracket^M \) is true if, for some \(X \in W \) st \(wN X \),
 * for any \(w \in X \), \(\llbracket A \rrbracket^M \);
 * for any \(w \in \{ X \mid wN X \} \), \(\llbracket B \rrbracket^M \).
Observations

- For any structure \(M \) for local reasoning, the following hold:
 - \(\text{if } \models^n A \Rightarrow B, \text{ then } \models^n B ; A \Rightarrow B ; B \)
 - \(\models^n B ; T \)
 - \(\text{if } \models^M A, \text{ then } \models^n B ; A \)
 - \(\models^n B ; A \Rightarrow B ; A \).

- There is a structure \(M \) s.t. \(\models^n B ; (p \Rightarrow T) \Rightarrow (B ; p \Rightarrow B ; p) \).
- There is a structure \(M \) s.t. \(\models^n \neg (B ; p \land B ; \neg p) \) and \(\models^n B ; \bot \).

Axiomatization

The logic of local reasoning \(\mathcal{N} \) (soundly and completely) axiomatized by \(E^I \) (\(M,N,P^i \)) \(i \in I \), i.e.,

\[
\begin{align*}
M_i &: B; (A \land B) \Rightarrow B; A \land B; B \\
N_i &: B; T \\
P_i &: \neg B; \bot
\end{align*}
\]

plus

\[
B; A \Rightarrow B; A \quad (i \in I)
\]

(\(|I| \geq 2 \)).
Logic of only-believing

(Levesque / Duc)

• Besides the usual believing-that (believing-at-least-that) operator, I study a believing-that and-only-that (believing-just-that) operator.
• For simplicity, assume just one agent.

Syntax

From a denumerable set \(\mathcal{F}_{\text{in}} = \{ p_0, p_1, \ldots \} \) of prop. letters, define the set \(\mathcal{F}_{\text{in}} \) of formulae as follows:

* if \(p \in \mathcal{F}_{\text{in}} \), then \(p \in \mathcal{F}_{\text{in}} \);
* \(T, \bot \in \mathcal{F}_{\text{in}} \);
* if \(A \in \mathcal{F}_{\text{in}} \), then \(\neg A \in \mathcal{F}_{\text{in}} \);
* \(\ldots \)
* if \(A \in \mathcal{F}_{\text{in}} \), then \(\mathcal{B}A \) (the system believes at least \(A \)), \(\mathcal{N}A \) (the system believes not at most \(A \)) \in \mathcal{F}_{\text{in}}.

For \(\mathcal{B}A \land \mathcal{N}A \) (the system believes exactly \(A \)), write \(\mathcal{D}A \).
Structures for only-believing

A structure for only-believing is a (uni)relational structure \(\mathcal{M} = (W, R, V) \) which is transitive and euclidean (note: that reflexivity is not required).

Satisfaction in structures for only-believing

For a structure \(\mathcal{M} = (W, R, V) \) for only-believing, the interpretation function \([-]_\mathcal{M} : [\text{Formula}] \to \mathcal{P}(W) \) is defined as follows:
- If \(p \in \text{Formula} \), then: \([p]_\mathcal{M} \) if \(we \in V(p) \);
- \([\top]_\mathcal{M} = \{ w \in W \} \) is true;
- \([\bot]_\mathcal{M} = \{ w \in W \} \) is false;
- \([\neg A]_\mathcal{M} \) iff \([A]_\mathcal{M} \) is false;
- \([\land]_\mathcal{M} \) for any \(w \), \(\forall w' : wRw' \), \([A]_\mathcal{M} \);,
- \([\lor]_\mathcal{M} \) for any \(w \), \(\forall w' : wRw' \), \([A]_\mathcal{M} \).

Some observations

- For any structure \(\mathcal{M} \) for only-believing, the following hold:
 - If \([A]_\mathcal{M} \), then \([\neg A \land BA]_\mathcal{M} \) (i.e., \([\neg (\neg A \land BA)]_\mathcal{M} \));
 - If \([A]_\mathcal{M} \), then \([\neg BA \lor \neg A]_\mathcal{M} \);
Axiomatization

The logic of only-believing is (soundly & completely) axiomatized by \(R45 \) plus

\[
N(A \Rightarrow B) \Rightarrow (N \neg A \Rightarrow N \neg B)
\]

\[
\frac{A}{\neg A}
\]

\[
\neg S \subseteq (S \subseteq A \land \neg B) \Rightarrow \subseteq \neg (A \lor B)
\]

where \(S, S' \) are arbitrary finite (possibly empty) sequences of \(B's \) and \(\neg B's \)

(the Humberstone axiom scheme)