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This paper presents the authors' vision about the achievements and expected 
further developments in the paradigm and techniques of constraint solving, and 
in applying these in programming 

1.1.1 Introduction 

Recently, constraints have become a hot topic in several computer science com­
munities. Constraints are fashionable these days. However, apart from this 
trendy side of the matter, we believe the field to have a steadier significance. 
After all, the rise of the constraint paradigm resulted from certain develop­
ments within AI and computing science. Constraint solving is basically about 
search in huge search spaces, which in bad cases possess little or almost no 
guidance-providing structure, and lots of practical problems that daily pop up 
in AI applications and in computing in general can only be solved by wise search 
management. 

One possible way to classify various constraint problems is the following: 

• Synthesis problems. We are given requirements in a form of a huge set of 
constraints, and our task is to find an object that satisfies this set (fully, 
or at least the important ones of them, ot all, but only up to certain pre­
cision). Examples are simulation (=reconstruction), where the laws (e.g. 
physical) that govern the situation or process under investigation are the 
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constraints, and various design (=construction) problems, where the re­
quirements on the end product and the properties of the available con­
struction elements are the constraints. For example, in program synthesis, 
the I/0 relations of the expected program and of the available modules 
act as constraints; in scheduling, constraints are temporal. 

• Analysis problems. These are about objects that have visible attributes 
(an outer appearance) and invisible attributes (an inner essence). The 
relationships between the visible and invisible attributes are known to 
us. Our task is, given the values of some object's visible attributes, find 
what the. values of its invisible attributes could be. Examples are all sorts 
of fault diagnosis problems (medical, technical, etc.), where malfunction 
manifestations are the visible attributes and faults are the invisible ones; 
and vision, where a bitmap is what we see, and the lines, angles, shapes 
etc. that give rise to this, are the underlying essence we are interested in. 

Problems that involve much search will always remain, and this sets forth 
three challenges: 

• Find out commonalities between different approaches that tackle search 
problems, and from upon this basis, advance the general philosophy of con­
straint manipulation. Because of the infamous trade-off between general­
ity and usefulness (efficiency), this requires delicacy, but can give valuable 
broad insights. Besides, this helps to develop common terminology, and 
to avoid duplication in the efforts that different communities undertake. 

• Seek for efficient constraint satisfaction algorithms, both universally ap­
plicable and domain-specific. This is very practical and of immediate use. 

• Make machines solve our problems elegantly and efficiently, progmm ma­
chines in new ways. 

A good philosophy of constraints is a basis for constraint programming 
languages that users will like, and good algorithms are a basis for constraint 
programming languages that machines will like. 

This sketch is a brief presentation of our subjective vision about these three 
challenges, i.e. about the achievements and expectable further developments in 
the paradigm and techniques of constraint solving, and in applying these in 
programming. 

1.1.2 How It All Started 

The concept of a constraint network was formed gradually. Sketchpad (Suther­
land 1963), one of the first interactive graphical interfaces, solved geometrical 
constraints. Relations in the form of equations or tables were used as problem 
specifications in several CAD systems, but no generalization was made. 
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One of the earliest generalizations close to constraint networks of today 
was the concept of computational models, which was initially developed for 
specifications of engineering problems and used in a problem solver Utopist 
(Tyugu 1970), which was a value propagation planner. 

Research in image processing led Montanari to the first systematic algebraic 
treatment of constraint networks (Montanari 1974), which originally appeared 
as a technical report already in 1970, and contained a path consistency al­
gorithm. A very basic consistency technique-Waltz filtering-originated also 
from a work on image processing (Waltz 1972). 

An IFIP workshop in Grenoble in 1978 on applications of AI and pattern 
recognition in computer aided design (Latombe 1978) gave strong impetus to the 
research in constraint solving. Present were a number of people who later have 
made significant contributions in the area: Montanari, Sussman, McDermott 
etc. The AI people discussed intelligent problem-solving with engineers and 
discovered a very promising application field for their methods. In particular, 
applications based on value propagation (then called constraint propagation) 
ideas were discussed, and a number of reports on research in this direction 
was published thereafter. A good example system is CONSTRAINTS (Sussman, 
Steele Jr. 1980). 

Elegant, but for some reason not widely acknowledged work in finite-domain 
constraint satisfaction was done in France in the end of the 1970s by Lauriere, 
who developed a system called ALICE and applied it to several practical prob­
lems, including prediction/detection problems in geology (Lauriere 1978). 

1.1.3 The Constraint Satisfaction Problem (CSP) 

There is much confusion in constraint terminology, partly for historical reasons, 
partly due to the young age of the area. A constraint network (CN) (if cleanly 
described) involves three components: 

• Variables. These are something that have names and can take values which 
are elements of some universal domain. 

• Constraints. These, too, have names, and can take values. Their values 
are relations of finite arity on the universal domain, and these values are 
usually given. A relation can be given either extensionally (by plainly 
enumerating the tuples it contains) or intensionally (by some effective 
characterization of its extension). 

• A connection {binding) function. This important component of a network 
is a function from constraint names to tuples of variable names. 

A valuation is a value assignment for the variables of a given CN, i.e. a 
function that maps the variables into elements of the universal domain. A val­
uation satisfies a constraint if, under it, the constraint holds on the variables it 
connects. A valuation satisfies a CN if it satisfies all of its constraints. A goal 
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of solving a CN is to find either one satisfying valuation (solution) or all such 
ones, and this is obviously a search problem formulation. 

It is quite straightforward to represent CNs as labelled hypergmphs. Variable 
names and values correspond to nodes and their labels respectively. Similarly, 
constraint names and values correspond to hyperarcs and their labels respec­
tively. Finally, the connection function of a CN corresponds to the incidency 
function of a hypergraph. 

1.1.4 Relation to Logic 

There is a clear meaning for CNs in 1st order predicate logic (FOPL). Variables 
correspond to (individual) variables, constraints correspond to predicates, and 
the connection function helps to turn the "name part" of the CN into a formula, 
according to the following prescription. Guided by connections, form atoms from 
the predicate and variable names, and conjoin these. The interpretation of the 
formula is partly open: the interpretations of the predicates are pre-determined, 
while the interpretations of the variables are yet to be found. 

As classical CSP benchmark, the Zebra problem, is described in the next 
chapter; figure 1.4.1 gives its constraint net, and figure 1.4.2 gives the logical 
reformation 

In logical terms, CN solving amounts to completing a partial model. In fact, 
we need not speak about partial models, but just restrict the class of models we 
consider to those where the predicates are interpreted as prescribed by a given 
CN. In this context, CN solving is simply model-construction. 

Algorithms for model-construction are something that usually is too down­
to-earth to interest pure logicians. The issue of whether a model class can be 
constructed for some theory, i.e. consistency of a theory, is, of course, of high 
importance, but the question whether a model can be found for some simple 
formula of FOPL in some given model class, and if yes, then how, is not inter­
esting. 

In applied logic, however, the situation is different. In applications of logic 
to computer science (e.g. in program reasoning), one often faces the following 
problems, and therefore there is research going on in finding efficient algorithms 
to solve them: 

• Model-checking. Given a formula and a model, check whether the formula 
is satisfied by the model. E.g. given a specification and a program, does 
the program meet the specification? 

• Model-construction. Given a formula, construct a model that satisfies it. 
E.g. given a specification, construct a program that meets it. 

• Entailment-checking. Given two formulae, does one entail the other (wrt 
the model class under consideration)? E.g. given two specifications, does 
one refine the other? 
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• Entailer-construction. Given a formula, construct another that entails it 
(the other formula must be in some sense better manageable). E.g. given 
a specification, construct another that refines it. 

On the basic level, CN solving is mostly about model-construction, as we 
have pointed out. But there are signs already, that in the future, the three other 
listed problems, especially the third, gain acuteness. 

The formulae that result from CN s are of very simple structure-conjuctions 
of atoms. Model-checking for such formulae is usually quite trivial (it depends 
on how the relations are given). But this is not the case with model-checking in 
general: verification of a transition system against a temporal-logic-of-actions 
formula is far from trivial. The situtation may change also in the constraint com­
munity, when partial constraint satisfaction (see subsection 1.1.6) and higher­
order constraints (see subsection 1.1. 7) gain more attention. 

In the cc programming paradigm (see subsection 1.1.8.2), one of the two 
fundamental operations that can be applied to a program's data state (which 
is a constraint store) is ask, and this checks whether the store yields a given 
constraint, i.e. in logical terms, whether one formula entails another. 

Stepwise specification refinement is a technique in program synthesis rely­
ing on entailer-construction. Roughly speaking, a given initial specification is 
gradually transformed into stronger and more specific ("finer") versions, the 
last of which is turned into a program. In constraint solving there is a clear 
analogue to specification refinement-the consistency techniques (see subsec­
tion 1.1.5.1). These techniques gradually transform a CN into more and more 
explicit versions (atoms in the corresponding formulae become more and more 
restricting), and the last version is solved directly (a model for the last formula 
is found directly). 

As a part of the work on the foundations of the cc framework (see subsection 
1.1.8.2), Saraswat et al. have been developing a theory of constraint systems as 
logical theories (Panangaden et al. 1991; Saraswat 1992a). A constraint system 
consists of a set of tokens, all carrying partial information about certain states­
of-affairs, and an entailment relation between finite sets of tokens. Constraints 
on states-of-affairs can be stated as finite sets of tokens (understood as con­
junctions of primitive constraints). The only requirements that an entailment 
relation is required to fulfill are transitivity and the property that any set of 
tokens must entail all of its subsets. In constraint systems, the concept of con­
straint is very general: one abstracts away from the extensions of constraints, 
being interested only in the entailment relation between them. 

These were some links between CN solving and logic. Probably there will 
be many more upcoming. From among the work done within the AI commu­
nity, we can mention (Bibel 1988; Mackworth 1992). The latter paper presents 
a very basic comparison of various ways of treating finite-domain constraint 
satisfaction in terms of different fragments of FOPL (including propositional 
logic). 
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1.1.5 CN Solving Techniques 

Provided that the universal domain can be effectively enumerated, the most 
straightforward CN solving technique is backtrack search for a satisfying val­
uation. Blind backtrack search is only applicable, if the domain is finite, since 
in this case such search is always terminating. But even for finite domains, 
backtrack search is grossly inefficient, and therefore researchers have tried to 
develop more efficient algorithms for various special cases. Infinite domains re­
quire domain-specific algorithms. 

Many algorithms assume binary CNs. A CN is binary if all its constraints 
are either unary or binary. Another assumption often made in algorithms is 
that, for every subset of the variables of a CN, there is exactly one constraint 
connecting them. Any CN can easily be transformed into such a form. If, for 
some subset of variables, there are several connecting constraints, replace these 
by one, whose extension is the intersection of the old ones. If, for some subset 
of variables, there is no connecting constraint, then connect them with a mock 
one of suitable arity, which is universally true (i.e. essentially non-constraining). 

1.1.5.1 Consistency Techniques A major idea in the various improvements 
to the brute-force backtracking is to cut down the search space by first modi­
fying the original CN into a more "explicit" one, and then running brute-force 
backtracking on this new CN. The modification is done by repeatedly enforc­
ing consistency on certain (small) sub-CNs with distinguished constraints. A 
sub-CN is consistent if every solution of its distinguished constraint can be ex­
tended to a solution of the sub-CN (what an inaccurate term from the logical 
point-of-view!!). A sub-CN is made consistent by tightening up the distinguished 
constraint (i.e. by restricting its extension). It is easy to see that each solution 
of the modified CN is a solution of the original CN. Moreover, if consistency is 
enforced carefully (and most algorithms do that), then even the converse holds, 
and the original and modified CNs are equivalent. As the extensions of con­
straints become smaller in the course of modification, backtrack search on the 
modified CN is more efficient than on the original CN (it becomes possible to 
backtrack earlier in the failing branches). 

The early consistency-enforcing algorithms processed arcs and paths. An 
arc is a sub-CN consisting of two variables, two unary constraints (one per each 
variable), and a binary constraint, the distinguished constraint being one of 
the unary constraints. A path is a sub-CN consisting of three variables, three 
unary constraints (one per each variable), and three binary constraints (one per 
each (unordered) pair of variables), the distinguished constraint being one of 
the binary constraints. Making an arc or path consistent amounts to applying 
simple operations on relations, much like those that one encounters in rela­
tional databases. A CN is called arc-consistent (resp. path-consistent) if all its 
arcs (resp. paths) are consistent. The goal of an arc- (resp. path-)consistency 
algorithm is to make a CN arc- (resp. path-)consistent. 
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A problem with making one sub-CN consistent is that this may make other 
sub-CNs inconsistent. That is why repetitions are generally needed if we insist on 
achieving simultaneous consistency of several sub-CNs. By subtle bookkeeping 
over the changes that modifications introduce into the original CN, one can 
get algorithms with low worst-case time complexity, but the space complexity 
increases. The first arc- and path-consistency algorithms, AC-1, AC-2, AC-
3, and PC-1, PC-2 were proposed in (Mackworth 1977; Mackworth, Freuder 
1985). They were impoved by Mohr and Henderson's (1986) AC-4 and PC-3 . 
Finally, Van Hentenryck, Deville and Teng (1992) gave a generic arc-consistency 
algorithm AC-5, which can be instantiated to reduce to AC-3 and AC-4, and, for 
a number of important special classes of constraints (functional, anti-functional, 
and monotonic constraints, and constraints that are piecewise of any one of these 
kinds), can be instantiated to yield special fast algorithms. 

If a CN (as a hypergraph) is dense, arc- and path-consistency algorithms 
may not improve the CN, and one might be tempted therefore to try to make 
larger sub-CNs consistent. Here a difficulty arises. Sub-CNs with more than two 
variables generally involve loops of constraints, and so a general algorithm for 
solving them is backtrack search. We face a dilemma: either to pre-process a CN 
extensively (which involves some backtrack search), and have the search space 
for the final backtrack search for the solutions of the modified CN smaller, or 
to pre-process less, and do all the backtrack search in the final end and in a 
larger search space. To choose adequately the sub-CNs to be made consistent 
is a critical problem. Guidance can be sought from the global structure of the 
network (see Section 1.1.5.2). 

Some authors (especially Montanari and Rossi) used to call consistency­
enforcing 'relaxation', though individual constraints become tighter in this pro­
cess and the overall CN typically remains equivalent to the original one. This 
was motivated by the consistency-enforcing process being one always dampen­
ing in a stable state where no futher changes can occur. In a way, 'relaxation' is 
a more beautiful term than 'consistency-enforcing', but it must be noted that 
a number of researchers apply the word 'relaxation' in relation to weakening of 
constraints in partial constraint satisfaction (see subsection 1.1.6), which is a 
very different thing. 

Yet another name for consistency-enforcing, 'consistency propagation', is 
most adequate in situations where CNs can be made consistent "in one pass", 
without repetitions, e.g. in case of tree-structured binary CNs. 

An important special form of (hyperedge) consistency enforcing is value 
propagation, which is applicable if the constraints of a CN are functional, i.e. if 
the value of some one variable participating in a constraint becomes uniquely 
determined once the values of the other variables of that constraint are known. 
If it is known in advance that a CN has a solution (e.g. in analysis situations), so 
that no conflicts can arise despite that in propagation there possibly are several 
potential sources for values of some variables, the variable values can be decided 
in one pass. 
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1.1.5.2 Network Structure Based Techniques Dechter and Pearl have 
worked on how to exploit the structure of a CN in choosing an appropriate 
tactic for solving a CN. They have proposed a number of techniques, which 
include the following: 

• Adaptive consistency enforcing. This is a consistency technique that avoids 
repeated considering of sub-CNs. The sub-CN to be made consistent next 
is decided at run-time. 

• Cycle-cutset decomposition. This technique is based on two facts: one is 
that by fixing the values of certain variables, the connectivity of a CN 
can be decreased, and the other is that tree-structured CNs can be solved 
very efficiently (by a repetition-free arc-consistency algorithm). 

• Tree clustering. This technique operates on the so-called dual graphs of 
binary CNs. 

For descriptions of these techniques, see (Dechter, Pearl 1988; Dechter, Pearl 
1989; Dechter 1990). 

In (Montanari, Rossi 1991a) it is pointed out that, if a CN was formed 
incrementally by a series of substitutions of smaller CNs for single constraints (in 
graph terms, by hyperedge replacements), then this CN can be solved without 
repetitions, by making the "building blocks" consistent in the order inverse 
to that of substitutions. Montanari and Rossi call this perfect relaxation. The 
problem with perfect relaxation is: how to find a appropriate decomposition 
of a given CN into a series of substitutions, such that it is not too costly to 
make the substituted CNs consistent. In some cases, however, the decomposition 
("the evolution history") of a CN is known, and then perfect relaxation may be 
useful. An natural example of an evolving CN is the constraint store in CLP 
(see Section 1.1.8.1) (Montanari, Rossi 1991b). 

1.1.5.3 Domain-Specific Techniques We do not intend to say much on 
domain-specific techniques. Although most practical and much exploited, they 
are not too interesting from a philosophical point of view due to their limited 
applicability. 

The best-studied domain is mtional/real arithmetic. Typically, linear equa­
tions and inequalities are considered, and solving systems of these is the classical 
problem of linear programming, the most famous method in this area being the 
simplex algorithm. In case if we only have linear equations, the Gaussian elimi­
nation is sufficient. An algebraic technique of Grabner bases (Buchberger 1985) 
can be applied to tackle non-linear real equations, whereas another algebraic 
technique of quantifier elimination (Collins 1975) can handle arbitrary predi­
cates definable in arithmetic. 

Another useful domain is that of Boolean values. The techniques are various 
Boolean unification algorithms (see e.g. Martin, Nipkov 1990), Grabner bases, 
and saturation methods. 
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A consistency technique for the domain of inexact arithmetical data, i.e. 
intervals, is tolerance propagation (Hyvonen 1992). 

1.1.6 Partial Constraint Satisfaction and Approximate Constraints 

Often, it is unnecessary or too costly to find out an exact solution to a CN, or 
exact solutions do not even exist. Then different goals might be posed: 

• To satisfy as many constraints as possible. 

• Find the least degree of priority such that all the constraints with higher 
priority can be satisfied simultaneously, and satisfy these. This assumes a 
priority ordering on the constraints. 

• To satisfy all constraints, but up to some precision. This assumes that we 
have a metric for measuring errors. 

Freuder and Wallace have written a paper on maximal constraint satis­
faction (Freuder, Wallace 1992), containing many references. Borning and col­
leagues have worked a lot on the so-called constraint hierarhies and introduced 
several priority orderings and error metrics (see e.g. Borning et al. 1987; Borning 
et al. 1992). 

One uses constraint networks to describe some reality. If the reality is com­
plex, one cannot do without simplifications in specifying the structure of the 
network and the extensions of its constraints. If "real relations" are approx­
imated by more restrictive ones, the worst that can happen is losing part of 
solutions. Thus, in cases where there is no risk that all solutions disappear, ap­
proximations may be a convenient means to make the search easier. A typical 
example is approximating a non-functional relation by a function. 

1.1.7 Modular and Higher-Order CNs 

Conventional CNs are flat, i.e. they do not have a modular structure. By this 
we mean that if there is some "homogeneity" in a CN with huge number of 
variables and constraints, we cannot take advantage of it, when writing down a 
description of the CN, or when reasoning about it, simply because there are no 
concepts in the constraint jargon for expressing this. 

A way to formalize one kind of "homogeneity" are the so-called dynamic 
CNs (Guesgen, Hertzberg 1992). The term 'dynamic CNs' is quite unfortunate, 
since dynamicity in this context has nothing to do with time and change, and 
we will use 'modular CNs' instead. The idea is as follows. 

It happens often that a subset of variables of a CN participates together in 
several constraints, and that only certain valuations of this subset's variables can 
be extended to satisfy all of them. In such a case, we have to do with an implicit 
constraint on these variables. If this implicit constraint has a meaning on the 
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conceptual level, it might well be worth of having an own name. Suppose we 
give it a name, and we reorganize the constraints which connected our variables 
so that they connect the new constraint instead. Then we find ourselves in a 
situation, where constraints connect variables and/or constraints. The values 
of constraints are relations on single elements and/or tuples of elements of the 
universal domain. At this stage the distinction between variables and constraints 
becomes blurring. Now there is only one step to be taken-to abandon variables 
completely. Guesgen and Hertzberg do this by regarding variables as constraints 
connecting nothing, i.e. 0-ary constraints. (In some respect, this identification is 
not very neat, since the extension of a 0-ary constraint ought to be a subset of 
the direct product of an empty family of sets.) The networks where constraints 
connect constraints are called modular CNs. 

In modular CNs, constraint values are relations between tuples. One could 
also think of giving another meaning for constraint-connecting constraints, 
where their values would be relations between relations. Such networks (let 
us call them higher-order CNs) ought to be a promising research direction. 

In (Tyugu, Uustalu 1994), it is shown that computability statements with 
nested implications in structural synthesis of programs (see e.g. Mints, Tyugu 
1983) can be viewed as higher-order functional constraints. 

1.1.8 Programming with Constraints 

1.1.8.1 The CLP Framework The most natural programming paradigm for 
combining with constraints is logic programming (LP). 

Roughly speaking, in the conventional LP, data are ground terms of some 
language, and control is governed by a resolution strategy. A program's data 
state is the set of variable instantiations made so far (since instantiations equate 
variables to terms, a single instantiation is generally just a little concretization 
of some variable's value), and its control state is the set of atomic goals yet 
to be demonstrated. Instantiations happen at unification, which is part of the 
resolution step. The final values of variables are determined by the set of in­
stantiations accumulated in the course of the program's run. Instantiations are 
equality statements and can well be viewed as constraints. 

From this observation, it is not a long way to the following generalization. 
As computation of variable values in LP is always about solving a constraint 
network, although a simple one, why not liberalize the form of constraints? Let 
us choose an interesting domain and a set of predicates over it with fixed inter­
pretation (e.g. real numbers and the machinery for writing down linear equa­
tions). Now, besides the usual predicates, whose meaning is defined by program 
clauses (we now call them control predicates), we have constmint predicates for 
which we allow no defining clauses, as we assume their meaning is known. We 
modify the concept of clause, so that a clause body now has a constraint part 
and a control part, which are finite sets of constraint and control atoms, re­
spectively. We also modify the resolution rule, so that constraint atoms play 
no active role in resolution-they are merely accumulated, similarly to instan-
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tiations. Now, likewise as it is checked at the resolution step in conventional 
LP whether unification succeeds (otherwise, backtrack occurs), there must be a 
check at resolution steps in our generalization, but a much stronger one. Namely, 
it must be verified that it is consistent to add to the current constraint store the 
constraint atoms from the input clause and the instantiations the unification 
suggests. This is not cheap. 

The paradigm we just outlined is called constraint logic programming (CLP) 
(Jaffar, Lassez 1987; Jaffar, Lassez 1988). A CLP interpreter must have two 
components: an inference engine which deals with resolutions, and a domain­
specific constraint engine which maintains the constraint store in a standard 
form, and, upon a request from the inference engine, is able to inform it whether 
the new constraints it suggests can be consistently added to the store. 

There are a number of CLP systems around, some of them commercially 
available. Examples are CHIP (Dincbas et al. 1988), CLP(R) (Jaffar, Michaylov 
1987), Prolog-111 (Colmerauer 1990), CAL (Aiba et al. 1988), Trilogy (Voda 
1988). For references and a tutorial survey on CLP, see either (Cohen 1990) 
or (Friihwirth et al. 1992). 

In the mainstream paradigm of concurrent logic programming, originally 
due to Shapiro, OR-parallelism is restricted to processing of the guards of the 
definition clauses of a given predicate, after which a decisive commitment is 
made in favour of one of them (for a survey on concurrent LP, see (Shapiro 
1989)). AKL (Franzen et al. 1991) is a constraint programming language stem­
ming from this tradition that facilitates deep guards, i.e. guards involving user­
defined predicates. The role of guards in concurrent LP languages is similar that 
of ask actions in cc languages (on these, see the next subsection). 

1.1.8.2 The cc Framework Saraswat et al. have developed a concurrent con­
straint programming paradigm, called cc (Saraswat, Rinard 1990). cc languages 
are similar to Milner's CCS in that a program is a set of agent definitions. But 
the communication mechanism of cc is radically different from that of CCS: 
communication in cc occurs through a constraint store, which is a program's 
data state. The basic actions of agents are asking and telling constraints. An 
ask action succeeds if the store entails the given constraint, fails if the given 
constraint is inconsistent with the store, and is suspended otherwise. A tell 
action adds a constraint to the store, and succeeds if the store remains con­
sistent, otherwise it fails. Complex behaviours are built from simpler ones by 
means of prefixing, indeterministic choice, interleaving, hiding, and mutual re­
cursion. Although cc is outwardly different from committed choice concurrent 
LP paradigm, it adequately captures it. 

The first denotational and SOS interleaving semantics of cc appeared in 
(Saraswat, Rinard, Panangaden 1990). 

Both entailment relations of constraint systems as well as as agent defi­
nitions of programs in cc languages can be seen as production rules of graph 
grammars. Hence, given a program in a cc language, the information necessary 
to determine its semantics can be encoded in the form of a single graph gram-
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mar. Montanari and Rossi have developed methods of deriving different true 
concurrency semantics of cc programs from their graph grammar representa­
tions. These are: partial order semantics {Montanari, Rossi 1991c; Montanari, 
Rossi 1993b), event structure semantics {Montanari, Rossi 1992), and contex­
tual net semantics (Montanari, Rossi 1993a). 

A logical semantics for the cc paradigm can be given using the formulas-as­
agents and proof-as-computation interpretation of intuitionistic logic (Lincoln, 
Saraswat 1991). Indeterminacy can be properly handled by moving to the set­
ting of linear logic (Lee), and if one wants to allow process abstractions to 
be passed as messages in communications, higher-order logic is needed {HLcc) 
(Saraswat, Lincoln 1992). 

An example of a cc language is Janus (Saraswat, Kahn, Levy 1989; Saraswat, 
Kahn, Levy 1990). Janus is a language for distributed programming, and enjoys 
the pleasant property that its computations cannot abort because of the store 
having become inconsistent as a result of a uncoordinated tells by several agents. 
This is achieved by severe syntactic restrictions on programs. A completely 
visual programming environment, called Pictorial Janus is under development 
(Kahn 1992), where exactly the same visual terms are used to depict a program, 
its execution states, and the whole history of these.(Saraswat 1992b) presents 
a thorough account of the state of the cc art. 

The novel Oz (Smolka et al. 1990) language extends the cc model with 
object-orientation (higher-orderness), avoiding thereby the clumsiness of stream 
communication, which is the usual communication mechanism in the mergers 
of concurrent LP and object-orientation. 

1.1.8.3 Constraint Imperative Programming The constraint imperative 
paradigm (CIP), proposed by Borning and colleagues and implemented in the 
object oriented languages Kaleidoscope90, '91, and '93 (Borning et al. 1992; 
Freeman-Benson, Borning 1992; Lopez et al. 1994), is conservative in that it 
seeks to keep to traditional programming idioms. In particular, it remains faith­
ful to the conventional understanding of stores as valuations, as opposed to the 
store-as-constraint approach of CLP and cc. As imperative variables are subject 
to destructive assignments and always possess values, the task of the constraint 
handler of a CIP system is not to find one set of permissible valuations of a pro­
gram's variables, which is typical of declarative constraint programming, but to 
reinstate the permissibility of the store (by changing some values), whenever an 
assignment to some variable happens to have spoilt this. Different constraints 
may have different degrees of priority. 

A variable can be blocked from automatic adjustments due to violation of 
its constraint and from potentially triggering adjustment of the other variables 
of its constraint by annotating it either read-only or write-only in the statement 
of the constraint. 

Mentally, the idiom of dynamic variables-of-state can always be replaced 
with that of static variables-of-history (streams). Doing so, the relation between 
two successive states of the store can be semantically considered as determined 
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by strong constraints of change and weak constraints of stay between old and 
new values, with old values read-only. 

1.1.9 Conclusion 

Despite the illusory freedom we experience from time to time, life is, in fact, 
pretty constrained. We have to fulfill expectations, obey regulations, stay 
alive. . . and all of that simultaneously. Luckily, in our daily doings, most of 
us manage to cope satisfactorily with the constraints that our wonderful world 
imposes on us. And in these days, we have even algorithms at our disposal to 
solve them "scientifically". So there is no reason for depression. What we need 
is a deeper insight into the nature and habits of these tiny tyrants and just some 
more algorithms-in order to make machines see our problems in the way we 
do, and have them helping us. 
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