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Abstract

It is widely believed that low-level languages with
jumps must be difficult to reason about by being in-
herently non-modular. We have recently argued that
this in untrue and proposed a novel method for de-
veloping compositional natural semantics and Hoare
logics for low-level languages and demonstrated its vi-
ability on the example of a simple low-level language
with expressions (Saabas & Uustalu 2005). The cen-
tral idea is to use the implicit structure of finite dis-
joint unions present in low-level code as an (ambigu-
ous) phrase structure.

Here we apply our method to a stack-based lan-
guage and develop it further. We define a composi-
tional natural semantics and Hoare logic for this lan-
guage and go then on to show that, in addition to
Hoare logics, one can also derive compositional type
systems as weaker specification languages with the
same method. We describe type systems for stack-
error freedom and secure information flow.

Keywords: low-level languages, compositionality,
Hoare logics, type systems, dataflow analyses, cer-
tified code, compilation of proofs, typings from com-
pilation

1 Introduction

The advent of the paradigm of proof-carrying (or,
more generally, certified) code has generated signif-
icant interest in reasoning about low-level code. This
is because software is usually distributed in compiled
form for the sake of self-containedness, but also be-
cause certification of compiled code instead of source
programs eliminates the need for the software con-
sumer to trust a compiler. Low-level languages are
widely believed to be difficult to reason about as
inherently non-modular. The lack of modularity is
attributed to low-level code being flat (a set of la-
belled instructions with no explicit structure) and to
the presence of general jumps. If a language is non-
modular, it cannot have a compositional semantics or
logic or type system.

We have recently argued that the non-modularity
premise in untrue and proposed to exploit a very ba-
sic implicit structure present in low-level code as the
“phrase structure” for semantic descriptions and log-
ics of low-level languages (Saabas & Uustalu 2005).
The structure in question is given by finite unions of
pieces of code with non-overlapping support: a piece
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of code is either a single instruction or a finite union
of non-overlapping pieces of code. Despite its banal-
ity and ambiguity (any piece of code can be parsed in
many ways), this structure is perfectly viable from the
point of metatheory and attractive from the point-of-
view of practical reasoning about programs: it sup-
ports the idea that properties of a large piece of code
should be provable from properties of its constituent
small pieces (which can be established by different
parties). An additional bonus of the method is that
it supports compiling high-level programs together
with proofs; in the compilation, the structure of a
high-level source program hints the optimal way to
structure its low-level equivalent.

In (Saabas & Uustalu 2005), we demonstrated this
method on the example of a simple low-level language
Goto with expressions. In this paper, we develop it
further and consider an operand-stack based language
Push. This language, although fairly similar on the
surface, is more demanding because of the possibility
of abnormal terminations due to stack errors (wrong
operand types, stack underflow), but it is also richer
in that, for Push, it makes sense to study not only
logics as calculi for correctness, but also type systems
as calculi for attesting weaker properties such as ba-
sic safety (stack-error freedom) or properties usually
established by dataflow analyses.

The technical contribution of the paper is as fol-
lows. We define a structured version SPush of Push
and equip it with a compositional natural seman-
tics discriminating between normal and abnormal ter-
minations and agreeing with the non-compositional
small-step semantics of Push. We also define an
error-free partial-correctness Hoare logic for SPush
and prove it to be sound and (relatively) complete
wrt. the natural semantics. For a compilation from
While to SPush, we show that it preserves While
proofs in a constructive sense (so that proof compi-
lation is possible) and reflects SPush proofs. Be-
yond the logic, we also describe two type systems
for SPush. The first system is a weakening of the
Hoare logic and attests stack-error freedom, which
we show sound and also complete wrt. an appropri-
ate abstracted natural semantics. We also show that
our compilation from While can be augmented to
accompany the SPush code delivered with a typing
derivation attesting that it is stack-error free. The
second type system is equivalent to a secure informa-
tion flow analysis.

The cornerstone technical ideas of the paper are:
(i) low-level languages can be handled in a composi-
tional way by exploiting an implicit phrase structure
that they do have anyway, (ii) natural semantics can
be made sensitive to abnormal terminations by intro-
ducing a special abnormal evaluation relation, (iii)
Hoare logics and type systems should be derived sys-
tematically from natural semantics descriptions, (iv)
the abstract interpretations that underlie dataflow



analyses can be described as abstract natural seman-
tics and the analyses themselves as type systems. Not
all of these ideas are new, but we believe that the pa-
per combines them in a useful fashion.

The organization of the papers is the following.
In Section 2, we introduce the syntax of the language
Push and its non-compositional small-step semantics.
In Section 3, we describe the syntax and the com-
positional natural (big-step) semantics of the struc-
tured version SPush. In Section 4, we describe the
corresponding Hoare logic. In Sections 5 and 6, we
discuss the abstract natural semantics and the type
system for safe stack usage. In Section 7, we discuss
a compilation of While programs to SPush pieces
of code and the corresponding compilation of proofs
and type derivation generation. Section 8 discusses
the abstract natural semantics and type system for
secure information flow. Section 9 is a brief overview
of the related work while 10 concludes.

2 The language and its small-step semantics

As advertised, our object of study is a simple operand-
stack based low-level language, which we call Push.

The building blocks of the syntax of Push are
labels ` ∈ Label, which are natural numbers, and
instructions instr ∈ Instr. We also assume hav-
ing a countable set of program variables (registers)
x ∈ Var. The instructions of the language are de-
fined by the grammar

instr ::= load x | store x | push n

| add | eq | ... | goto ` | gotoF `

A piece of code c ∈ Code is a finite set of labelled
instructions, i.e., a set of pairs of a label and an in-
struction: Code =df Pfin(Label× Instr). A piece of
code c is wellformed, if no label in it labels two differ-
ent instructions, i.e., if (`, instr), (`, instr′) ∈ c imply
instr = instr ′. The domain of a piece of code is the
set of labels in it: dom(c) =df {` | (`, instr) ∈ c}.

Semantic descriptions of imperative languages are
defined in terms of states. A state for Push consists
of a label `, stack ζ and store σ, which record the
pc value and the content of the operand stack and
the store at a moment: State =df Label× Stack×
Store. A stack is a list whose elements can be both
boolean or integer values: Stack =df (Z ∪ B)∗. (We
use the notation X∗ for lists over X, [] for the empty
list, x :: xs for the list with head x and tail xs and
xs ++ ys for the concatenation of xs and ys.) Vari-
ables can only be of integer type and must always be
defined: Store =df Var → Z.

If a language is low-level, its semantics is usually
described in an operational form that is small-step
(there is no non-trivial notion of big steps one could
talk of). The small-step semantics of Push is for-
mulated via a single-step reduction relation − `� ⊆
State×Code×State defined in Figure 1. The associ-
ated multi-step reduction relation �∗ is its reflexive-
transitive closure. It is immediate that � is deter-
ministic, there is always at most one step possible. A
state can be terminal (c ` (`, σ) 6�) for two reasons:
(i) we have ` /∈ dom(c), which signifies normal termi-
nation, or (ii) we have ` ∈ dom(c) but the rule for
the instruction at ` does not apply because of wrong
types or shortage of potential operands on the stack,
which signifies abnormal termination. (The possibil-
ity of abnormal terminations was not present in the
language Goto of (Saabas & Uustalu 2005).) The
obvious shortcoming of this semantics is that it is en-
tirely non-compositional (there is no phrase structure
to follow) and that all of the code must be known at
all times because of the jump instructions.

(`, store x) ∈ c n ∈ Z
c ` (`, n :: ζ, σ) � (`+ 1, ζ, σ[x 7→ n])

store

(`, load x) ∈ c
c ` (`, ζ, σ) � (`+ 1, σ(x) :: ζ, σ)

load

(`, push n) ∈ c
c ` (`, ζ, σ) � (`+ 1, n :: ζ, σ)

push

(`, add) ∈ c n0, n1 ∈ Z
c ` (`, n0 :: n1 :: ζ, σ) � (`+ 1, n0 + n1 :: ζ, σ)

add

(`, eq) ∈ c n0, n1 ∈ Z
c ` (`, n0 :: n1 :: ζ, σ) � (`+ 1, n0 = n1 :: ζ, σ)

eq

. . .

(`, goto m) ∈ c
c ` (`, ζ, σ) � (m, ζ, σ)

goto

(`, gotoF m) ∈ c
c ` (`, tt :: ζ, σ) � (`+ 1, ζ, σ)

gotoFtt

(`, gotoF m) ∈ c
c ` (`,ff :: ζ, σ) � (m, ζ, σ)

gotoFff

Figure 1: Single-step reduction rules of Push

3 Structured version and natural semantics

To overcome the non-compositionality problem of the
semantics described above, some structure needs to be
introduced into Push code. As was shown in (Saabas
& Uustalu 2005), a useful structure to use for defining
the semantics of a low-level language compositionally
is that of finite unions of non-overlapping pieces of
code. This is present in the code anyway, but it is
ambiguous (any set is a finite union of sets in many
ways) and implicit, so one has to choose and make
the choices explicit. Hence we define a corresponding
structured version of Push, which we call SPush.
Structured pieces of code sc ∈ SCode are defined by
the following grammar

sc ::= (`, instr) | 0 | sc0 ⊕ sc1

which stipulates that a piece of code is either a single
labelled instruction or a finite union of pieces of code.
We define the domain dom(sc) of a piece of code sc
to be the set of all labels in the code: dom(0) = ∅,
dom((`, instr)) = {l}, dom(sc0 ⊕ sc1) = dom(sc0) ∪
dom(sc1).

A piece of code is wellformed iff the labels of all
of its instructions are different: a single instruction
is always wellformed, 0 is wellformed and sc0 ⊕ sc1
is wellformed iff both sc0 and sc1 are wellformed and
dom(sc0)∩dom(sc1) = ∅. Note that contiguity is not
required for wellformedness, the domain of a piece of
code does not have to be an interval.

The compositional semantic description we give
for SPush is a (big-step) natural semantics. Since
there is the possibility of abnormal terminations and
we want to distinguish between non-terminations and
abnormal terminations, we define two evaluation re-
lations, �−� , �−�p ⊆ State×SCode×State, one
for normal, the other for abnormal terminating eval-
uations. Both relate possible initial states for eval-
uating a piece of code to the corresponding terminal
states. The two relations are defined (mutually induc-
tively) by the rules in Figure 2. Of course, alterna-
tively one could say that we have just one evaluation
relation but indexed by a doubleton for distinguishing
between the two flavors of termination.

The loadns and pushns rules should be self-
explanatory. Both store x and add can potentially
cause an error, therefore there are two rules for them,
for normal and abnormal evaluation.



(`, ζ, σ) �(`, load x)� (`+ 1, σ(x) :: ζ, σ)
loadns

n ∈ Z
(`, n :: ζ, σ) �(`, store x)� (`+ 1, ζ, σ[x 7→ n])

storens
∀n ∈ Z, ζ′ ∈ (Z ∪ B)∗. ζ 6= n :: ζ′

(`, ζ, σ) �(`, store x)�p (`, ζ, σ)
storeab

ns

(`, ζ, σ) �(`, push n)� (`+ 1, n :: ζ, σ)
pushns

n0, n1 ∈ Z
(`, n0 :: n1 :: ζ, σ) �(`, add)� (`+ 1, n0 + n1 :: ζ, σ)

addns

∀n0, n1 ∈ Z, ζ′ ∈ (Z ∪ B)∗. ζ 6= n0 :: n1 :: ζ′

(`, ζ, σ) �(`, add)�p (`, ζ, σ)
addab

ns

. . .266664
(m, ζ, σ) �(`, goto m)� (`′, ζ′, σ′)

(`, ζ, σ) �(`, goto m)� (`′, ζ′, σ′)

(m, ζ, σ) �(`, goto m)�p (`′, ζ′, σ′)
(`, ζ, σ) �(`, goto m)�p (`′, ζ′, σ′)

377775 m 6= `

(`, ζ, σ) �(`, goto m)� (m, ζ, σ)
goto 6=ns

266666666666664

(`, tt :: ζ, σ) �(`, gotoF m)� (`+ 1, ζ, σ)

(m, ζ, σ) �(`, gotoF m)� (`′, ζ′, σ′)

(`,ff :: ζ, σ) �(`, gotoF m)� (`′, ζ′, σ′)

(m, ζ, σ) �(`, gotoF m)�p (`′, ζ′, σ′)
(`,ff :: ζ, σ) �(`, gotoF m)�p (`′, ζ′, σ′)

∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`, ζ, σ) �(`, gotoF m)�p (`, ζ, σ)

377777777777775

m 6= `

(`, tt :: ζ, σ) �(`, gotoF m)� (`+ 1, ζ, σ)
gotoF 6=tt

ns

m 6= `

(`,ff :: ζ, σ) �(`, gotoF m)� (m, ζ, σ)
gotoF 6=ff

ns

m 6= ` ∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`, ζ, σ) �(`, gotoF m)�p (`, ζ, σ)
gotoF 6=ab

ns

ffs ∈ {ff}∗

(`,ffs ++ tt :: ζ, σ) �(`, gotoF `)� (`+ 1, ζ, σ)
gotoF=

ns

ffs ∈ {ff}∗ ∀b ∈ B, ζ′ ∈ (Z ∪ B)∗. ζ 6= b :: ζ′

(`,ffs ++ ζ, σ) �(`, gotoF `)�p (`, ζ, σ)
gotoF=ab

ns

` ∈ dom(sci) (`, ζ, σ) �sci� (`′′, ζ′′, σ′′) (`′′, ζ′′, σ′′) �sc0 ⊕ sc1� (`′, ζ′, σ′)

(`, ζ, σ) �sc0 ⊕ sc1� (`′, ζ′, σ′)
⊕ns

` ∈ dom(sci) (`, ζ, σ) �sci�p (`′, ζ′, σ′)
(`, ζ, σ) �sc0 ⊕ sc1�p (`′, ζ′, σ′)

⊕abn
ns

` ∈ dom(sci) (`, ζ, σ) �sci� (`′′, ζ′′, σ′′) (`′′, ζ′′, σ′′) �sc0 ⊕ sc1�p (`′, ζ′, σ′)
(`, ζ, σ) �sc0 ⊕ sc1�p (`′, ζ′, σ′)

⊕abl
ns

` /∈ dom(sc)

(`, ζ, σ) �sc� (`, ζ, σ)
oodns

Figure 2: Natural semantics rules of SPush



We have spelled out the rules for goto m and
gotoF m instructions in two different ways: a recur-
sive style (in square brackets) and a direct style. The
two styles are equivalent, but we comment only the
direct style. The recursive style could be seen as a
formal explanation of the direct style. The issue is
that, differently from other single-instruction pieces
of code, a goto or gotoF instruction can loop back on
itself. This happens when the labelling label and the
target label coincide.

The side condition in the goto6=
ns rule states that

a goto m instruction only terminates, if it does not
loop back on itself. The gotoF6=tt

ns rule should be
self-explanatory, however the gotoF m rules for the
case there is a ff on the top of the stack should be
explained. The complication here is that just like
goto m, gotoF m can loop back on itself. Unlike
goto m however, it cannot loop infinitely, since every
successful jump removes an element from the stack.
Instead it can either exit the loop at some point (when
it encounters a tt on top of the stack), or cause an er-
ror if it either encounters an integer on the stack or
the stack runs empty. Therefore, two rules (gotoF=

ns

and gotoF=ab
ns ) are needed for normal and abnormal

behavior of gotoF m for the case when it loops back
on itself. The rule gotoF6=ab

ns covers the case when
there is no boolean value at the top of the stack.

The rule ⊕ns says that, to evaluate the union sc0⊕
sc1 starting from some state such that the pc is in the
domain of sci, one first needs to evaluate sci, and then
evaluate the whole union again, but starting from the
new intermediate state reached. Finally, the oodns
rule is needed to reflect the case where the reduction
sequence is normally terminated because the pc has
landed outside the domain of the code.

It is fairly straightforward that the pc in the final
state of a normally terminating evaluation of a code
is outside its domain while the pc in the final state of
an abnormally terminating evaluation is inside. Eval-
uation is deterministic in the sense that any piece of
code terminates either normally or abnormally in a
definite state, if it terminates at all.

Every SPush piece of code can be mapped into
a Push piece of code using a forgetful function
U ∈ SCode → Code, defined by U((`, instr)) =df
{(`, instr)}, U(0) =df ∅, U(sc0 ⊕ sc1) =df U(sc0) ⊕
U(sc1). The compositional natural semantics of
SPush agrees with the non-compositional semantics
of Push in the following technical sense.
Theorem 1 (Preservation of evaluations by
U) (i) If (`, ζ, σ) �sc� (`′, ζ ′, σ′), then U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ /∈ dom(sc). (ii)
If (`, ζ, σ) �sc�p (`′, ζ ′, σ′), then U(sc) ` (`, ζ, σ) �∗

(`′, ζ ′, σ′) 6� and `′ ∈ dom(sc).
Proof. By induction on the derivation of
(`, ζ, σ) �sc� (`′, ζ ′, σ′) or (`, ζ, σ) �sc�p (`′, ζ ′, σ′). 2

Theorem 2 (Reflection of stuck reduc-
tion sequences by U) (i) If U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ /∈ dom(sc),
then (`, ζ, σ) �sc� (`′, ζ ′, σ′). (ii) If U(sc) `
(`, ζ, σ) �∗ (`′, ζ ′, σ′) 6� and `′ ∈ dom(sc), then
(`, ζ, σ) �sc�p (`′, ζ ′, σ′)
Proof. By induction on the structure of sc and sub-
ordinate induction on the length of the reduction se-
quence. 2

From these theorems it is immediate that the
SPush semantics of a structured version of a piece
of Push code cannot depend on the way it is struc-
tured: if U(sc) = U(sc′), then sc and sc′ have exactly
the same evaluations (although with different deriva-
tions).

4 Hoare logic

The compositional natural semantics of SPush is a
good basis for developing a compositional Hoare logic
of it. Just as evaluations relate an initial and a termi-
nal state, Hoare triples relate pre- and postconditions
about states. Since a state contains a pc value and
stack content, it must be possible to refer to these
in assertions. In our logic, we have special individ-
ual constants pc and st to refer to them. Using the
constant pc, we can make assertions about particular
program points by constraining the state to corre-
spond to a certain pc value. This allows us to make
assertions only about program points through which
the particular piece of code is entered or exited, thus
eliminating the need for global contexts of invariants
and making reasoning modular.

The logic we define is an error-free partial correct-
ness logic: for a Hoare triple to be derivable, the post-
condition must be satisfied by the terminal state of
any normal evaluation and abnormal evaluations from
the allowed initial states must be impossible. (We
would get a more expressive partial correctness logic
with triples with two postconditions, one for normal
terminations, the other for abnormal terminations;
in the case of a programming language with error-
handling constructs, that approach is the only reason-
able one, see, e.g., (Schröder & Mossakowski 2004).
Our logic corresponds to the case where the abnor-
mal postcondition is always ⊥, so there is no need
to ever spell it out. A different version where it is
always > would correspond to error-ignoring partial
correctness.)

The signature of the Hoare logic contains, as extra-
arithmetical and extra-list constants, special individ-
ual constants pc, st and the program variables Var,
to refer to the values of the program counter, stack
and program variables in a state. The assertions
P,Q ∈ Assn are formulae over that signature in an
ambient logical language containing the signature of
arithmetic and lists of integers and booleans. We
use the notation Q[x0, .., xn 7→ t0, .., tn] to denote
that every occurrence of xi in Q has been replaced
with ti. The derivable Hoare triples {} − {} ⊆
Assn × SCode × Assn are defined inductively by
the rules in Figure 3.

The extra disjunct pc 6= `∧Q in the rules for prim-
itive instructions is required because of the seman-
tic rule oodns: if we evaluate the instruction start-
ing from outside the domain of the instruction (i.e.
pc 6= `), we have immediately terminated and have
hence remained in the same state, therefore any asser-
tion holding before evaluating the instruction will also
hold after. The disjunct m = ` in the rule for goto m
accounts for the case when goto m loops back on it-
self. We have a similar case with the gotoF m rule,
but here the situation is more subtle. As explained in
Section 3, when gotoF m loops back on itself, it can
either exit normally to the next instruction (in case
there is some number of ffs on the stack, followed by a
tt), or raise an error. The disjunct m = `∧ .. accounts
for that case.

The rule for unions can be seen as mix of the while
and sequence rules of the Hoare logic of While: if,
evaluating either sc0 or sc1 starting from a state that
satisfies P and has the pc value in the domain of sc0
resp. sc1, we end in a state satisfying P , then, after
evaluating their union sc0⊕ sc1 starting from a state
satisfying P , we are guaranteed to be in a state sat-
isfying P . Furthermore, we know that we are then
outside the domains of both sc0 and sc1. The rule
of consequence is the same as in the standard Hoare
logic. Note that we have circumvented the inevitable
incompleteness of any axiomatization of logics con-
taining arithmetic by invoking semantic entailment



instead of deducibility in the premises of the conseq
rule.

The Hoare logic is sound and complete.

Theorem 3 (Soundness of Hoare logic) If
{P} sc {Q} and (`, ζ, σ) |=α P , then (i) for any
(`′, ζ ′, σ′) such that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have
(`′, ζ ′, σ′) |=α Q, and (ii) there is no (`′, ζ ′, σ′) such
that (`, ζ, σ)�sc�p (`′, ζ ′, σ′).

Proof. By induction on the derivation of {P} sc {Q}.
2

To get completeness, we have to assume that the
underlying logical language is expressive. For any as-
sertion Q, we need an assertion wlp(sc, Q) that, se-
mantically, is its weakest precondition, i.e., for any
state (`, ζ, σ) and valuation α of free variables, we
have (`, ζ, σ) |= wlp(sc, Q) iff (`, ζ, σ) �sc� (`′, ζ ′, σ′)
implies (`′, ζ ′, σ′) |= Q for any (`′, ζ ′, σ′). The wlp
function is available for example when the underlying
logical language has a greatest fixedpoint operator.

Lemma 1 {wlp(sc, Q)} sc {Q}.

Proof. By induction on the structure of sc. 2

Theorem 4 (Completeness of Hoare logic) If,
for any (`, ζ, σ) and α such that (`, ζ, σ) |=α

P , it holds that (i) for any (`′, ζ ′, σ′) such
that (`, ζ, σ) �sc� (`′, ζ ′, σ′), we have (`′, ζ ′, σ′) |=α

Q, and (ii) there is no (`′, ζ ′, σ′) such that
(`, ζ, σ) �sc�p (`′, ζ ′, σ′), then {P} sc {Q}.

Proof. Immediate from the lemma using that any
precondition of an assertion entails its wlp. 2

5 Abstract natural semantics

We now proceed to defining an abstract natural se-
mantics for SPush that operates on type names as
abstract values instead of concrete values. This al-
lows us to later prove a type system for basic safety
sound and complete. While soundness of the type
system could also be shown wrt. the concrete natural
semantics, completeness cannot.

The abstract semantics is defined in terms of
abstract states, which are pairs of labels ` ∈
Label and abstract stack contents ψ ∈ AbsStack:
AbsState =df Label × AbsStack. Instead of
values, abstract stacks stack names of value types:
AbsStack =df {int,bool}∗. We do not have an ab-
stract store component in an abstract state. Since
variables can only be integers in a concrete store,
there is no interesting information to record. To re-
late a concrete state to an abstract state, we have
a function abs ∈ State → AbsState, defined by
abs(`, ζ, σ) =df (`, abs(ζ)) where abs ∈ Stack →
AbsStack replaces concrete values in a stack with the
names of their types: abs([]) =df [], abs(n :: ζ) =df
int :: abs(ζ) for n ∈ Z, and abs(b :: ζ) =df bool ::
abs(ζ) for b ∈ B.

The abstract semantics is a rather straightforward
rewrite of the concrete semantics to work on abstract
states, but it is important to notice that this makes
evaluation nondeterministic. Just like in the concrete
semantics, we need to distinguish between abnormal
and normal evaluations, so there are two evaluation
relations � − � , � − �p ⊆ AbsState × SCode ×
AbsState. The rules of the abstract natural seman-
tics are given in Figure 4. Mimicking those of the
concrete semantics from Figure 2, they should be self-
explanatory. As before, we have spelled out the rules

for goto and gotoF in two alternative styles, recur-
sive and direct. The nondeterminism stems from the
non-exclusive rules of gotoF.

Concrete evaluations are preserved by abstraction.

Theorem 5 (Preservation of evaluations by
abstraction) (i) If (`, ζ, σ) �sc� (`′, ζ ′, σ′), then
abs(`, ζ, σ) �sc� abs(`′, ζ ′, σ′).
(ii) If (`, ζ, σ)�sc�p (`′, ζ ′, σ′), then
abs(`, ζ, σ) �sc�p abs(`′, ζ ′, σ′).

6 Type system from the Hoare logic

With the abstract semantics defined, we are now
ready to show that the Hoare logic we have formulated
for SPush can be weakened into a type system for es-
tablishing basic code safety—the absence of operand
type and stack underflow errors in an Push program.
The abstract semantics allows us to prove the type
system not only sound, but also complete.

Instead of relating assertions as Hoare triples do,
typings relate state types. The intuitive meaning of
a typing is analogous to that of a Hoare triple: it
says that if the given piece of code is run from an
initial state in the given pretype, then if it termi-
nates normally, the final state is in the posttype, and,
moreover, it cannot terminate abnormally. Contrarily
to assertions, state types are designed to record only
that state information that is necessary for guaran-
teeing error-freedom.

The building blocks for state types are value types
τ ∈ ValType and stack types Ψ ∈ StackType, de-
fined by the grammars

τ ::= ⊥ | int | bool |?
Ψ ::= ⊥ | [] | τ :: Ψ | ∗

(note the overloading of the ⊥ sign). A state type
Π ∈ StateType is a finite set of labelled stack types,
i.e., pairs of a label and a stack type: StateType =df
Pfin(Label × StackType). A state type Π is well-
formed iff no label ` in it labels more than one stack
type, i.e., (`,Ψ) ∈ Π and (`,Ψ′) ∈ Π imply Ψ = Ψ′.
The domain dom(Π) of a state type is the set of labels
appearing in it, i.e., dom(Π) =df {` | (`,Ψ) ∈ Π}.

We will use the notation Π�L for the restriction
of a state type Π to a domain L ⊆ Label, i.e.,
Π�L =df {(`,Ψ) | (`,Ψ) ∈ Π, ` ∈ L}, and write L
for the complement of L, i.e., L =df Label\L.

The meanings of value, stack and state types
are set-theoretic, they denote sets of abstract val-
ues, abstract stacks and abstract states. The se-
mantic functions L− M ∈ ValType → P({int,bool}),
L− M ∈ StackType → P(AbsStack), L− M ∈
StateType → P(AbsState) are defined as follows:

L⊥ M =df ∅
L int M =df {int}

L bool M =df {bool}
L ? M =df {int,bool}
L⊥ M =df ∅
L [] M =df {[]}

L τ :: Ψ M =df {δ :: ψ | δ ∈ L τ M, ψ ∈ LΨ M}
L ∗ M =df {int,bool}∗

L Π M =df {(`, ψ) | (`,Ψ) ∈ Π, ψ ∈ L Ψ M}

On each of the three categories of types, we de-
fine a subtyping relation by the rules in Figure 5.
These are relations ≤ ⊆ ValType × ValType,
≤ ⊆ StackType × StackType, ≤ ⊆ StateType ×
StateType.



{(pc = ` ∧Q[pc, st 7→ `+ 1, x :: st ]) ∨ (pc 6= ` ∧Q)} (`, load x) {Q}
loadhoa

{(pc = ` ∧ ∃z ∈ Z, w ∈ (Z ∪ B)∗. st = z :: w ∧Q[pc, st , x 7→ `+ 1, w, z]) ∨ (pc 6= ` ∧Q)} (`, store x) {Q}
storehoa

{(pc = ` ∧Q[pc, st 7→ `+ 1, n :: st ]) ∨ (pc 6= ` ∧Q)} (`, push n) {Q}
pushhoa


(pc = ` ∧ ∃z0, z1 ∈ Z, w ∈ (Z ∪ B)∗. st = z0 :: z1 :: w ∧Q[pc, st 7→ `+ 1, z0 + z1 :: w])

∨ (pc 6= ` ∧Q)

ff
(`, add)

˘
Q

¯ addhoa

. . .
(pc = ` ∧ ((m 6= ` ∧Q[pc 7→ m]) ∨m = `))

∨ (pc 6= ` ∧Q)

ff
(`, goto m)

˘
Q

¯ gotohoa

8><>:
(pc = ` ∧((m 6= ` ∧((∃w ∈ (Z ∪ B)∗. st = tt :: w ∧Q[pc, st 7→ `+ 1, w])

∨(∃w ∈ (Z ∪ B)∗. st = ff :: w ∧Q[pc, st 7→ m,w])))
∨(m = ` ∧ ∃ffs ∈ {ff}∗, w ∈ (Z ∪ B)∗.st = ffs ++ tt :: w ∧Q[pc, st 7→ `+ 1, w])))

∨ (pc 6= ` ∧Q)

9>=>; (`, gotoF m)
˘
Q

¯ gotoFhoa

{P}0 {P}
0hoa

{pc ∈ dom(sc0) ∧ P} sc0 {P} {pc ∈ dom(sc1) ∧ P} sc1 {P}
{P} sc0 ⊕ sc1 {pc /∈ dom(sc0) ∧ pc /∈ dom(sc1) ∧ P}

⊕hoa

P |= P ′ {P ′} sc {Q′} Q′ |= Q

{P} sc {Q}
conseqhoa

Figure 3: Hoare rules of SPush

(`, ψ) �(`, load x)� (`+ 1, int :: ψ)
loadans

(`, int :: ψ) �(`, store x)� (`+ 1, ψ)
storeans

∀ψ′ ∈ {int, bool}∗. ψ 6= int :: ψ′

(`, ψ) �(`, store x)�p (`, ψ)
storeab

ans

(`, ψ) �(`, push n)� (`+ 1, int :: ψ)
pushans

(`, int :: int :: ψ) �(`, add)� (`+ 1, int :: ψ)
addans

∀ψ′ ∈ {int, bool}∗. ψ 6= int :: int :: ψ′

(`, ψ) �(`, add)�p (`, ψ)
addab

ans

. . .266664
(m,ψ) �(`, goto m)� (`′, ψ′)

(`, ψ) �(`, goto m)� (`′, ψ′)

(m,ψ) �(`, goto m)�p (`′, ψ′)
(`, ψ) �(`, goto m)�p (`′, ψ′)

377775 m 6= `

(`, ψ) �(`, goto m)� (m,ψ)
goto 6=ans

266666666666664

(`, bool :: ψ) �(`, gotoF m)� (`+ 1, ψ)

(m,ψ) �(`, gotoF m)� (`′, ψ′)

(`, bool :: ψ) �(`, gotoF m)� (`′, ψ′)

(m,ψ) �(`, gotoF m)�p (`′, ψ′)
(`, bool :: ψ) �(`, gotoF m)�p (`′, ψ′)

∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, ψ) �(`, gotoF m)�p (`, ψ)

377777777777775

m 6= `

(`, bool :: ψ) �(`, gotoF m)� (`+ 1, ψ)
gotoF 6=tt

ans

m 6= `

(`, bool :: ψ) �(`, gotoF m)� (m,ψ)
gotoF 6=ff

ans

m 6= ` ∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, ψ) �(`, gotoF m)�p (`, ψ)
gotoF 6=ab

ans

bools ∈ {bool}∗

(`, bools ++ bool :: ψ) �(`, gotoF `)� (`+ 1, ψ)
gotoF=

ans

bools ∈ {bool}∗ ∀ψ′ ∈ {int, bool}∗. ψ 6= bool :: ψ′

(`, bools ++ψ) �(`, gotoF `)�p (`, ψ)
gotoF=ab

ans

` ∈ dom(sci) (`, ψ) �sci� (`′′, ψ′′) (`′′, ψ′′) �sc0 ⊕ sc1� (`′, ψ′)

(`, ψ) �sc0 ⊕ sc1� (`′, ψ′)
⊕ans

` ∈ dom(sci) (`, ψ) �sci�p (`′, ψ′)
(`, ψ) �sc0 ⊕ sc1�p (`′, ψ′)

⊕abn
ans

` ∈ dom(sci) (`, ψ) �sci� (`′′, ψ′′) (`′′, ψ′′) �sc0 ⊕ sc1�p (`′, ψ′)
(`, ψ) �sc0 ⊕ sc1�p (`′, ψ′)

⊕abl
ans

` /∈ dom(sc)

(`, ψ) �sc� (`, ψ)
oodans

Figure 4: Abstract natural semantics rules of SPush



τ ≤ τ ⊥ ≤ τ τ ≤ ?

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ ⊥ :: Ψ ≤ ⊥ τ :: ⊥ ≤ ⊥ ⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀`,Ψ. (`,Ψ) ∈ Π ⊃ Ψ = ⊥ ∨ ∃Ψ′. (`,Ψ′) ∈ Π′ ∧Ψ ≤ Ψ′

Π ≤ Π′

Figure 5: Subtyping rules of SPush

The subtyping relations thus introduced are sound
and complete for the intended interpretation of sub-
typing as set inclusion.

Theorem 6 (Soundness and completeness of
subtyping) (i) τ ≤ τ ′ iff L τ M ⊆ L τ ′ M. (ii) Ψ ≤ Ψ′ iff
LΨ M ⊆ L Ψ′ M. (iii) Π ≤ Π′ iff LΠ M ⊆ LΠ′ M.

Very pleasantly, the ranges P({int,bool}), {LΨ M |
Ψ ∈ StackType}, {L Π M | Π ∈ StateType} of
each of the three type interpretation functions are
ω-complete lower semilattices with inclusion as the
underlying partial order: set-theoretic binary inter-
sections and intersections of nonincreasing ω-chains
do not take us out of the range. (Note that the anal-
ogous statement about unions is not true, e.g., the
set L [] M ∪ L int :: [] M) has no type denotation. Note
also that there are nonincreasing ω-chains that do not
stabilize in a finite number of steps, e.g., ∗, int :: ∗,
int :: int :: ∗, . . . , but all such chains have ⊥ as their
glb.) Because of the soundness and completeness of
subtyping, we can reflect this at the syntactic level:
we can define a syntatic binary glb operator ∧ on
types and a syntactic glb operator

∧
on deductively

nonincreasing ω-sequences of types that are glb oper-
ators deductively (‘deductively’ meaning ‘in the sense
of the subtyping relation’).

The typing relation − : −→ ⊆ StateType ×
SCode × StateType is defined by the rules in Fig-
ure 6. The typing rules for instructions are pre-
sented in a “weakest pretype” style, where the pre-
type is obtained by applying appropriate substitu-
tions in the given posttype. For example the rule
loadts for (`, load x) states that if stack type τ :: Ψ
(where τ is int or ?) or ∗ is required at label ` + 1,
then the suitable stack types for label ` are Ψ and ∗,
respectively. Any other posttype at label ` + 1 does
not have a suitable pretype. At first sight, it might
seem that wellformedness can be lost in the pretype
by taking the union. This is in fact not the case: there
is at most one stack type associated with label ` + 1
in Π, hence both sets have at most one element and
one of them must be empty. The rest of the non-jump
instruction rules are defined in similar fashion.

The jump rules might need some explanation. The
goto=

ts rule allows to derive pretype ∗ for label `: since
the instruction does not terminate, any posttype will
be satisfied by any pretype at label `. The gotoF 6=

ts
rule combines two posttypes; since gotoF can branch,
both posttypes must be satisfied at the entry, mean-
ing that the pretype is the intersection of the post-
types. No pretype at ` can guarantee any posttype in
the case of (`, gotoF `), since such instruction could
always terminate abnormally. The consequence rule
could also be called subsumption, given that we are
speaking about a type system: that is what it is really.

The type system is sound and complete wrt. the
abstract natural semantics in the sense of error-free
partial correctness.

Theorem 7 (Soundness of typing) If sc : Π −→
Π′ and (`, ψ) ∈ L Π M, then (i) for any (`′, ψ′) such
that (`, ψ)�sc� (`′, ψ′), we have (`′, ψ′) ∈ L Π′ M, and
(ii) there is no (`′, ψ′) such that (`, ψ)�sc�p (`′, ψ′).

Proof. By induction on the derivation of sc : Π −→
Π′, using that subtyping is sound. 2

From the preservation of evaluations by abstrac-
tion, it is immediate that therewith we also have
soundness wrt. the concrete natural semantics.

Corollary 1 If sc : Π −→ Π′ and
abs(`, ζ, σ) ∈ L Π M, then (i) for any (`′, ζ ′, σ′)
such that (`, ζ, σ)�sc� (`′, ζ ′, σ′), we have
abs(`′, ζ ′, σ′) ∈ L Π′ M, and (ii) there is no (`′, ζ ′, σ′)
such that (`, ζ, σ)�sc�p (`′, ζ ′, σ′).

To prove completeness, we introduce a syntactic
pretype function wpt ∈ SCode × StateType →
StateType. The definition is given in Figure 7. The
ω-sequence glb in the clause for ⊕ is welldefined be-
cause the operator S is monotone, making the se-
quence a nonincreasing chain. As S is also continu-
ous, the glb is the greatest fixedpoint of S.

The following lemmata show that the wpt of a
state type is semantically larger than any pretype and
deductively (i.e., in the sense of typing) a pretype.

Lemma 2 If (i) for any (`′, ψ′) such that
(`, ψ) �sc� (`′, ψ′), we have (`′, ψ′) ∈ L Π′ M, and
(ii) there is no (`′, ψ′) such that (`, ψ) �sc�p (`′, ψ′),
then (`, ψ) ∈ L wpt(sc,Π′) M.

Lemma 3 sc : wpt(sc,Π′) −→ Π′.

Proof. By induction on the structure of sc. 2

Theorem 8 (Completeness of typing) If, for any
(`, ψ) ∈ L Π M, it holds that (i) for any (`′, ψ′) such that
(`, ψ) �sc� (`′, ψ′), we have (`′, ψ′) ∈ LΠ′ M, and (ii)
there is no (`′, ψ′) such that (`, ψ) �sc�p (`′, ψ′), then
sc : Π −→ Π′.

Proof. From the two lemmata, using that subtyping
is complete. 2

It is fairly obvious that state types can be trans-
lated to assertions. We can define concretization
functions conc ∈ ValType → P(Z ∪ B), conc ∈
StackType → P(Stack), conc ∈ StateType →
Assn, taking us from the language of the type system
to the language of the logic, by

conc(⊥) =df ∅
conc(int) =df Z

conc(bool) =df B
conc(?) =df Z ∪ B
conc(⊥) =df ∅
conc([]) =df {[]}

conc(τ :: Ψ) =df {z :: w | z ∈ conc(τ), w ∈ conc(Ψ)}
conc(∗) =df (Z ∪ B)∗
conc(Π) =df∨

{pc = ` ∧ st ∈ conc(Ψ) | (`,Ψ) ∈ Π}

Concretization preserves and reflects derivable
subtypings/entailments.



(`, load x) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
loadts

(`, store x) : {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π} ∪Π�{`} −→ Π
storets

(`, push n) : {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
pushts

(`, add) : {(`, int :: int :: Ψ) | (`+ 1, τ :: Ψ) ∈ Π, int ≤ τ} ∪ {(`, int :: int :: ∗) | (`+ 1, ∗) ∈ Π} ∪Π�{`} −→ Π
addts

. . .

m 6= `

(`, goto m) : {(`,Ψ) | (m,Ψ) ∈ Π} ∪Π�{`} −→ Π
goto6=ts (`, goto `) : {(`, ∗)} ∪Π�{`} −→ Π

goto=
ts

m 6= `

(`, gotoF m) : {(`, bool :: (Ψ ∧Ψ′)) | (`+ 1,Ψ), (m,Ψ′) ∈ Π} ∪Π�{`} −→ Π
gotoF 6=ts (`, gotoF `) : Π�{`} −→ Π

gotoF=
ts

0 : Π −→ Π
0ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π

sc0 ⊕ sc1 : Π −→ Π�
dom(sc0)∪dom(sc1)

⊕ts

Π′
0 ≤ Π0 sc : Π0 −→ Π1 Π1 ≤ Π′

1

sc : Π′
0 −→ Π′

1

conseqts

Figure 6: Typing rules of SPush

wpt((`, load x),Π′) =df {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, store x),Π′) =df {(`, int :: Ψ) | (`+ 1,Ψ) ∈ Π′} ∪Π′�{`}

wpt((`, push n),Π′) =df {(`,Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, add),Π′) =df {(`, int :: int :: Ψ) | (`+ 1, τ :: Ψ) ∈ Π′, int ≤ τ} ∪ {(`, int :: int :: ∗) | (`+ 1, ∗) ∈ Π′} ∪Π′�{`}

wpt((`, goto m),Π′) =df

(
{(`,Ψ) | (m,Ψ) ∈ Π′} ∪Π′�{`} if m 6= `

{(`, ∗)} ∪Π′�{`} if m = `

wpt((`, gotoF m),Π′) =df

(
{(`, bool :: (Ψ ∧Ψ′)) | (`+ 1,Ψ), (m,Ψ′) ∈ Π′} ∪Π′�{`} if m 6= `

Π′�{`} if m = `

wpt(0,Π′) =df Π′

wpt(sc0 ⊕ sc1,Π
′) =df

^
i<ω

Πi where

Π0 =df {(`, ∗) | ` ∈ dom(sc0 ⊕ sc1) ∪ dom(Π′)}
Πi+1 =df S(Πi)
S(Π) =df wpt(sc0,Π)�dom(sc0) ∪ wpt(sc1,Π)�dom(sc1) ∪Π′�

dom(sc0⊕sc1)

Figure 7: Weakest pretype calculus



Theorem 9 (Preservation of subtypings and
reflection of entailments by concretization) (i)
τ ≤ τ ′ iff conc(τ) |= conc(τ ′). (ii) Ψ ≤ Ψ′ iff
conc(Ψ) |= conc(Ψ′). (iii) Π ≤ Π′ iff conc(Π) |=
conc(Π′).

Preservation holds also of typing.

Theorem 10 (Preservation of typings by
concretization) If sc : Π −→ Π′, then
{conc(Π)} sc {conc(Π′)}.

We do not get reflection of Hoare triples by con-
cretization, however. Consider, for example, the code
sc =df (0, push tt)⊕ ((1, gotoF 3)⊕ (2, push 17)). We
have conc((0, [])) = pc = 0 ∧ st = [], conc((3, [int])) =
pc = 3∧∃z ∈ Z. st = [z] and can derive {pc = 0∧st =
[]} sc {pc = 3∧∃z ∈ Z. st = [z]}, while we cannot de-
rive sc : {(0, [])} −→ {(3, [int])}. The type system
does not discover that the false branch will never be
taken. The best posttype we can get for {(0, [])} is
{(3, ∗)}.

We finish the discussion of the type system by re-
marking that introducing the value type ? and the
stack type ∗ was not inevitable. But a version with-
out these constructs would only type pieces of code
for which the operand stack has a definite depth and
value type content for every label through which its
evaluations may pass. More generally, there is a de-
sign issue here. We could, for example, introduce
additional stack types int∗, bool∗ for stacks of un-
specified length, consisting of integers or booleans
only. Yet another design choice would be to de-
fine StackType =df Pfin(AbsStack) instead. Un-
der this discipline, some pieces of code with finitely
unbalanced stack usage would receive more precise
types, e.g., for the code

0 gotoF 3
1 push 17
2 goto 5
3 push tt
4 push ff

and pretype {(0, [bool])}, the best posttype we can
get in our type system is {(5, ? :: ∗)}, but the alterna-
tive posttype {(5, {[int], [bool,bool]})} is clearly more
informative. On the other hand, a piece of code with
infinite variation such as

0 load x
1 geq0
2 gotoF 8
3 push 17
4 load x
5 dec
6 store x
7 goto 0

and the pretype {(0, [])} have {(8, ∗)} as the strongest
posttype in our type system but no posttype under
the alternative approach.

7 Compilation

We shall now define a compilation function from
While programs to SPush pieces of code.

The compilation function is standard except that
it produces structured code (we have chosen struc-
tures that are the most convenient for us) and is
compositional. The compilation rules are given in
Figure 8. The compilation relation for expressions
−↘− ⊆ Label×(AExp∪BExp)×SCode×Label
relates a label and a While expression to a piece of

code and another label. The relation for statements
−↘− ⊆ Label×Stm×SCode×Label is similar.
The idea is that the domain of a compiled expression
or statement will be a left-closed, right-open interval.
(It may be an empty interval, which does not even
contain its beginning-point.) The first label is the
beginning-point of the interval and the second is the
corresponding end-point.

Compilation is total and deterministic, i.e., a func-
tion, and produces a piece of code whose support is
exactly the desired interval.

Lemma 4 (Totality and determinacy of com-
pilation) (i) For any `, e, there exist sc, `′ such that
e `↘`′ sc. If e `↘`0 sc0 and e `↘`1 sc1, then sc0 = sc1

and `0 = `1. (ii) For any `, s, there exist sc, `′

such that s `↘`′ sc. If s `↘`0 sc0 and s `↘`1 sc1, then
sc0 = sc1 and `0 = `1.

Lemma 5 (Domain of compiled code) (i) If
e `↘`′ sc, then dom(sc) = [`, `′). (ii) If s `↘`′ sc,
then dom(sc) = [`, `′).

That compilation does not alter the meaning of an
expression or statement is demonstrated by the facts
that While evaluations are preserved and SPush
evaluations are reflected by it. We must however
take into account the fact a compiled While expres-
sion or statement is intended to be entered from its
beginning-point.

Theorem 11 (Preservation of evaluations) (i)
If e `↘`′ sc, then (`, ζ, σ) �sc� (`′, JeKσ :: ζ, σ). (ii) If
s `↘`′ sc and σ �s�σ′, then (`, ζ, σ) �sc� (`′, ζ, σ′).

Proof. By induction on the structure of e or the
derivation of σ �s�σ′. 2

Theorem 12 (Reflection of evaluations) (i) If
e `↘`′ sc and (`, ζ, σ) �sc� (`′′, ζ ′, σ′), then `′′ = `′,
ζ ′ = JeKσ :: ζ and σ′ = σ. (ii) If s `↘`′ sc and
(`, ζ, σ) �sc� (`′′, ζ ′, σ′), then `′′ = `′, ζ ′ = ζ and
σ �s�σ′.

Proof. By induction on the structure of sc
and subordinate induction on the derivation of
(`, ζ, σ) �sc� (`′′, ζ ′, σ′). 2

It is easy to show that compilation preserves deriv-
able While Hoare triples (in a suitable format that
takes into account that a While statement proof as-
sumes entry from the beginning-point and guarantees
exit to the end-point). But one can also give a con-
structive proof: a proof by defining a compositional
translation of While program proofs to SPush pro-
gram proofs, i.e., a proof compilation function.

Theorem 13 (Preservation of derivable Hoare
triples) (i) If e `↘`′ sc and P is a While assertion,
then {pc = `∧st = ζ∧P} sc {pc = `′∧st = e :: ζ∧P}.
(ii) If s `↘`′ sc and {P} s {Q}, then {pc = ` ∧ st =
ζ ∧ P} sc {pc = `′ ∧ st = ζ ∧Q}.

Proof. [Non-constructive proof] Straightforward
from soundness of the Hoare logic of While, reflec-
tion of evaluations by compilation and completeness
of the Hoare logic of SPush. 2

Proof. [Constructive proof: Preservation Hoare
triple derivations] By induction on the structure of
e or the derivation of {P} s {Q}. 2

Reflection of derivable SPush Hoare triples by
compilation can also be shown. As with preservation,



proving reflection non-constructively is a straightfor-
ward matter, but again there is also a constructive
proof. Given a While program, we can “decompile”
the correctness proof of its compiled form (a SPush
piece of code) into a correctness proof of the While
program. For the constructive proof, we have to use
the fact that proofs of SPush programs admit a cer-
tain normal form.

Theorem 14 (Reflection of derivable Hoare
triples) (i) If e `↘`′ sc and {P} sc {Q}, then
P [pc, st 7→ `, ζ] |= Q[pc, st 7→ `′, e :: ζ].
(ii) If s `↘`′ sc and {P} sc {Q}, then {P [pc, st 7→
`, ζ]} s {Q[pc, st 7→ `′, ζ]}.

Proof. [Non-constructive proof] From soundness of
the Hoare logic of SPush, preservation of evaluations
by compilation and completeness of the Hoare logic
of While. 2

Proof. [Constructive proof: Reflection of Hoare
triple derivations] By induction on the structure of sc,
using the fact that any Hoare logic derivation can be
normalized to a form where proper inferences come in
strict alternation with consequence inferences. (Nor-
malization is trivial: a sequence of several consecu-
tive consequence inferences can be compressed into
one and a missing consequence inference can be ex-
panded into a trivial consequence inference.) 2

For the type system of SPush, we can prove
the following analogous results. The first of them
means that we can strengthen our compilation func-
tion to accompany the SPush code it produces from
a While-program with a typing derivation.

Theorem 15 (Typing from compilation) (i) If
a `↘`′ sc, then sc : {(`, ψ)} −→ {(`′, int :: ψ)}. If
b `↘`′ sc, then sc : {(`, ψ)} −→ {(`′,bool :: ψ)}. (ii)
If s `↘`′ sc, then sc : {(`, ψ)} −→ {(`′, ψ)}.

Theorem 16 (Possible typings) (i) If a `↘`′ sc
and sc : {(`, ψ)} −→ Π, then {(`′, int :: ψ)} ≤ Π.
If b `↘`′ sc and sc : {(`, ψ)} −→ Π, then {(`′,bool ::
ψ)} ≤ Π. (ii) If s `↘`′ sc and sc : {(`, ψ)} −→ Π,
then {(`′, ψ)} ≤ Π.

8 Abstract natural semantics and type sys-
tem for secure information flow

Besides stack-error freedom, it is possible to devise
systems to present dataflow analyses. Here we sketch
an abstract natural semantics and type system for se-
cure information flow analysis. For space reasons, this
description is very Spartan, but it should make sense
to anyone familiar with secure information flow anal-
yses for high-level imperative languages à la Denning
& Denning (1977).

Central for both the abstract natural semantics
and type system for secure information flow is a
distributive lattice (D,≤,∧,∨,L,H) of security lev-
els for information flowing in the program (stack
positions, variables and the pc). Abstract states
are quadruples of a label ` ∈ Label, a security
level d ∈ D for the current pc value, and an ab-
stract stack and an abstract store: AbsState =df
Label × D × AbsStack × AbsStore. An abstract
stack ψ ∈ AbsStack is a list over D corresponding to
the security levels of the stack positions in the imagin-
able concrete state, an abstract store Σ ∈ AbsStore
similarly records the security levels of the variables
in the imaginable concrete state: AbsStack =df D∗,
AbsStore =df Var → D.

The abstract semantics is sensitive to stack un-
derflow, but ignores the possibility in the concrete
semantics of operand type errors (confuses them with
normal terminations). An important concept in the
semantics is the notion of a single-exit piece of code:
this is a piece of code sc for which one can single
out a label `∗ such that every target label (succes-
sor label or jump target, depending on the kind of
the instruction) of any labelled instruction in sc is
in dom(sc) ∪ {`∗}; we call `∗ the exit-point of sc.
Single-exit unions are analogous to single-exit com-
pound blocks in control-flow diagrams; compare these
to if- or while-statements of While, which are single-
exit as all While statements but special in that their
control-flow diagrams enclose inner branchings. The
rules of the semantics are presented in Figure 9. Be-
cause of the single-exit union rule, this abstract se-
mantics is not neutral wrt. the structure imposed on
an unstructured Push piece of code: depending on
how small or large the smallest single-exit union en-
closing a branching instruction gotoF is in the struc-
ture imposed on a code, a given initial security state
can take us to a more or less optimistic terminal se-
curity state.

In the type system, the state types Π ∈
StateType are quadruples of a label, security level
(for the pc), stack type and abstract store (there
is no difference between an abstract store and a
store type!): StateType =df Pfin(Label × D ×
StackType × AbsStore) where no label may oc-
cur twice in a wellformed statetype. Stack types
Ψ ∈ StackType are defined by the grammar

Ψ ::= ⊥ | [] | d :: Ψ | ∗

Stack types have a set-theoretic meaning defined as
follows:

L⊥ M =df ∅
L [] M =df {[]}

L d :: Ψ M =df {d′ :: ψ | d′ ≤ d, ψ ∈ L Ψ M}
L ∗ M =df D∗

The type system is derived from the abstract nat-
ural semantics—the typing rules are in the weakest
pretype style—and attests stack-underflow-error free
information flow security. The type system may type
pieces of code that can terminate abnormally due to
wrong operand types. The subtyping rules are in Fig-
ure 10 while the typing rules appear in Figure 11.
(ψ ∨ d denotes the list resulting from joining d to ev-
ery element of ψ;

∨
ds denotes the join of all elements

of ds;
∧

Ψ denotes the meet of all elements of Ψ.)

9 Related work

In the young days of Hoare logic, quite some atten-
tion was paid to general and restricted jumps in high-
level languages. Hoare’s original logic (1969) was for
While and characteristic to the various proposals
that were made thereafter is that they deal with ex-
tensions of While or a similar language. The log-
ics of Clint & Hoare (1972), Kowaltowski (1977) and
de Bruin (1981) use conditional Hoare triples (so the
proof system is a natural deduction system) to be able
to make and use assumptions about label invariants.
In the solution of Arbib & Alagić (1979), Hoare triples
have multiple postconditions, reflecting the fact that
statements involving gotos are multiple-exit.

Logics for low-level languages without phrase
structure have only become a topic of active research
with the advent of PCC, with Java bytecode and
.NET CIL being the main motivators. (There is



n `↘`+1 (`, push n) x `↘`+1 (`, load x)

a0
`↘`′′ sc0 a1

`′′↘`′ sc1

a0 + a1
`↘`′+1 (sc0 ⊕ sc1)⊕ add

b0 `↘`′′ sc0 b1 `′′↘`′ sc1

b0 = b1 `↘`′+1 (sc0 ⊕ sc1)⊕ eq

a `↘`′ sc

x := a `↘`′+1 (sc ⊕ store x) skip `↘` 0

s0 `↘`′′ sc0 s1 `′′↘`′ sc1

s0; s1 `↘`′ sc0 ⊕ sc1

b `↘`′′ scb st
`′′+1↘`′′′ sct sf

`′′′+1↘`′ scf

if b then st else sf
`↘`′ (scb ⊕ (`′′, gotoF `′′′ + 1))⊕ ((sct ⊕ (`′′′, goto `′))⊕ scf )

b `↘`′′ scb s `′′+1↘`′ sc

while b do s `↘`′+1 (scb ⊕ (`′′, gotoF `′ + 1))⊕ (sc ⊕ (`′, goto `))

Figure 8: Rules of compilation from While to SPush

(`, d, ψ,Σ) �(`, load x)� (`+ 1, d,Σ(x) ∨ d :: ψ,Σ)
loadans

(`, d, d′ :: ψ,Σ) �(`, store x)� (`+ 1, d, ψ,Σ[x 7→ d′ ∨ d])
storeans

∀d ∈ D, ψ′ ∈ D∗. ψ 6= d :: ψ′

(`, d, ψ,Σ) �(`, store x)�p (`, d, ψ,Σ)
storeab

ans

(`, d, ψ,Σ) �(`, push n)� (`+ 1, d, d :: ψ,Σ)
pushans

(`, d, d0 :: d1 :: ψ,Σ) �(`, add)� (`+ 1, d, d0 ∨ d1 ∨ d :: ψ,Σ)
addans

∀d0, d1 ∈ D, ψ′ ∈ D∗. ψ 6= d0 :: d1 :: ψ′

(`, d, ψ,Σ) �(`, add)�p (`, d, ψ,Σ)
addab

ans

m 6= `

(`, d, ψ,Σ) �(`, goto m)� (m, d, ψ,Σ)
goto 6=ans

m 6= `

(`, d, d′ :: ψ,Σ) �(`, gotoF m)� (`+ 1, d ∨ d′, ψ ∨ (d ∨ d′),Σ)
gotoF 6=tt

ans

m 6= `

(`, d, d′ :: ψ,Σ) �(`, gotoF m)� (m, d ∨ d′, ψ ∨ (d ∨ d′),Σ)
gotoF 6=ff

ans

m 6= l ∀d ∈ D, ψ′ ∈ D∗. ψ 6= d :: ψ′

(`, d, ψ,Σ) �(`, gotoF m)�p (`, d, ψ,Σ)
gotoF 6=ab

ans

ds ∈ D∗

(`, d, ds ++ d′ :: ψ,Σ) �(`, gotoF `)� (`+ 1, d, ψ ∨ (d ∨
W

ds ∨ d′),Σ)
gotoF=

ans
ds ∈ D∗

(`, d, ds,Σ) �(`, gotoF `)�p (`+ 1, d, [],Σ)
gotoF=ab

ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d′′, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′) sc0 ⊕ sc1 multiple-exit

(`, d, ψ,Σ) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′)
⊕ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d′′, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1� (`′, d′, ψ′,Σ′) sc0 ⊕ sc1 single-exit

(`, d, ψ,Σ) �sc0 ⊕ sc1� (`′, d, ψ′,Σ′)
⊕ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci�p (`′′, d, ψ′′,Σ′′)

(`, d, ψ,Σ) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)
⊕abn

ans

` ∈ dom(sci) (`, d, ψ,Σ) �sci� (`′′, d, ψ′′,Σ′′) (`′′, d′′, ψ′′,Σ′′) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)

(`, d, ψ,Σ) �sc0 ⊕ sc1�p (`′, d′, ψ′,Σ′)
⊕ans

` /∈ dom(sc)

(`, d, ψ,Σ) �sc� (`, d, ψ,Σ)
oodans

Figure 9: Abstract natural semantics rules of SPush for secure information flow

Ψ ≤ Ψ

Ψ ≤ Ψ′′ Ψ′′ ≤ Ψ′

Ψ ≤ Ψ′ τ :: ⊥ ≤ ⊥ ⊥ ≤ Ψ Ψ ≤ ∗
τ ≤ τ ′ Ψ ≤ Ψ′

τ :: Ψ ≤ τ ′ :: Ψ′

∀x.Σ(x) ≤ Σ′(x)

Σ ≤ Σ′

∀`, d,Ψ,Σ. (`, d,Ψ,Σ) ∈ Π ⊃ Ψ = ⊥ ∨ ∃Ψ′. (`, d′,Ψ′,Σ′) ∈ Π′ ∧ d ≤ d′ ∧Ψ ≤ Ψ′ ∧ Σ ≤ Σ′

Π ≤ Π′

Figure 10: Subtyping rules of SPush for secure information flow



(`, load x) : {(`, d′ ∧ d,Ψ,Σ[x 7→ d′ ∧ Σ(x)]) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d, ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
loadts

(`, store x) : {(`,Σ(x) ∧ d,Σ(x) :: Ψ,Σ) | (`+ 1, d,Ψ,Σ) ∈ Π} ∪Π�{`} −→ Π
storets

(`, push n) : {(`, d′ ∧ d,Ψ,Σ) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d, ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
pushts

(`, add) : {(`, d′ ∧ d, d′ :: d′ :: Ψ,Σ) | (`+ 1, d, d′ :: Ψ,Σ) ∈ Π} ∪ {(`, d,H :: H :: ∗,Σ) | (`+ 1, d, ∗,Σ) ∈ Π} ∪Π�{`} −→ Π
addts

. . .

m 6= `

(`, goto m) : {(`, d,Ψ,Σ) | (m, d,Ψ,Σ) ∈ Π} ∪Π�{`} −→ Π
goto 6=ts (`, goto `) : {(`,H, ∗, constH)} ∪Π�{`} −→ Π

goto=
ts

m 6= `

(`, gotoF m) : {(`, d0, d0 :: (Ψ ∧Ψ′),Σ ∧ Σ′) | (`+ 1, d,Ψ,Σ), (m, d′,Ψ′,Σ′) ∈ Π} ∪Π�{`} −→ Π

where d0 = d ∧
V

Ψ ∧ d′ ∧
V

Ψ′

gotoF 6=ts

(`, gotoF `) : Π�{`} −→ Π
gotoF=

ts

0 : Π −→ Π
0ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π sc0 ⊕ sc1 multiple-exit

sc0 ⊕ sc1 : Π −→ Π�
dom(sc0⊕sc1)

⊕ts

sc0 : Π�dom(sc0) −→ Π sc1 : Π�dom(sc1) −→ Π sc0 ⊕ sc1 single-exit with `∗ the exit-point
Π′ ≤ Π ∀(`′, d′,Ψ′,Σ′) ∈ Π′�dom(sc0⊕sc1). d

′ ≤ d∗

sc0 ⊕ sc1 : Π′ −→ {(`∗, d∗,Ψ,Σ) | (`∗, d,Ψ,Σ) ∈ Π} ∪Π�
dom(sc0⊕sc1)∪`∗

⊕ts

Π′
0 ≤ Π0 sc : Π0 −→ Π1 Π1 ≤ Π′

1

sc : Π′
0 −→ Π′

1

conseqts

Figure 11: Typing rules of SPush for secure information flow

one very notable exception though: Floyd’s logic of
control-flow graphs (1967).) The logic of Quigley
(2003) for Java bytecode is based on decompilation,
so it applies to pieces of code in the image of a fixed
compiler. Benton’s (2004) logic for a Push-like stack-
based language involves global contexts of label in-
variants as de Bruin’s logic. Bannwart & Müller’s
(2005) logic extends it to a subset of Java bytecode,
with both an operand stack and a call stack, leaving
out exceptions.

The work of Huisman & Jacobs (2000) describes
a Hoare logic for Java, incl. exceptions. Schröder
& Mossakowski (2003) and Schröder & Mossakowski
(2004) discuss a systematic method for designing
Hoare logics for languages with monadic side-effects,
in particular, exceptions.

The present paper builds upon our recent work
(Saabas & Uustalu 2005), where a compositional nat-
ural semantics and Hoare logic based on the im-
plicit finite unions structure are introduced for a sim-
ple low-level language Goto with expressions. The
same structure is used by Tan & Appel (2005) and
Tan (2005), who study the same language. But in-
stead of introducing a natural semantics for the struc-
tured version of the language, they proceed from a
small-step ideology. As a result, they arrive at a
continuation-style Hoare logic explainable by Appel
& McAllester’s ‘indexed model’ (2001), with a rather
convoluted interpretation of Hoare triples involving
explicit fixedpoint approximations. Apparently un-
aware of Tan & Appel’s work, Benton (2005) defines
a similar logic for a stack-based language with a typ-
ing component ensuring that the stack is used safely.

Presenting program analyses especially for func-
tional languages in terms of type systems is a popu-
lar topic. Naik & Palsberg (2005) have related model
checking and type systems for While. A different
general method to produce type systems for While
equivalent to dataflow analyses is described in the
work of Laud et al. (2005). As for low-level languages,
Morrisett et al. (1999) imposed a memory-safety type
system on an assembly language and Morrisett et al.
(2003) extended it for a stack-based language. Stata

& Abadi (1999) were the first to describe the Java
bytecode verifier as a type system. All such systems
are again non-compositional and make use of global
contexts of label invariants (where an invariant is as-
sociated to every instruction or every basic block of
the global piece of code), except for the type system
component in Benton’s (2005) logic.

A static analysis for secure information flow was
first described by Denning & Denning (1977). They
worked with a While-like language, but also pro-
posed a way to handle languages with goto instruc-
tions. Kobayashi & Kirane (2002) and Barthe & Rezk
(2005) use the same idea of control dependence re-
gions in type systems equivalent to secure information
flow analyses for sequential Java bytecode.

10 Conclusions and future work

We have shown that our original idea of structuring
low-level languages with finite unions to obtain com-
positional natural semantics and Hoare logics (Saabas
& Uustalu 2005) applies to stack-based languages just
as well as to languages with store only. The possi-
bility of abnormal terminations can be handled well,
and the semantics and logics obtained are neat and
enjoy every desirable metatheoretic property. More-
over, in the richer setting of a stack-based language,
it is meaningful to consider abstracted semantics and
type systems too. Notably, one can obtain a type sys-
tem to attest safe stack usage, but also produce type
systems for other purposes. We have demonstrated
this on the example of a type system equivalent to a
secure information flow analysis.

We plan to apply the method also to a lan-
guage with both an operand stack and call stack, cf.
(Benton 2005). We will also validate the practicality
of our approach in realistic code and proof / type-
derivation presentation (certified code formats). For
proof compilation and generation of type derivations
the approach seems just ideal and we intend to im-
plement a proof compiler / type derivation generator.

On the theoretical side, we intend to carry out a
detailed comparison of our natural-semantics based



direct approach to the continuation-style approach of
Tan & Appel (2005) and Benton (2005) that relies on
Appel & McAllester’s (2001) ‘indexed model’.
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