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Abstract
We introduce update monads as a generalization of state monads. Update monads are the
compatible compositions of reader and writer monads given by a set and a monoid. Distributive
laws between such monads are given by actions of the monoid on the set.

We also discuss a dependently typed generalization of update monads. Unlike simple update
monads, they cannot be factored into a reader and writer monad, but rather into similarly looking
relative monads.

Dependently typed update monads arise from cointerpreting directed containers, by which
we mean an extension of an interpretation of the opposite of the category of containers into the
category of set functors.
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1 Introduction

In denotational semantics and functional programming, reader, writer and state monads [15]
are well known and important. They are related to each other, but there is also something
that may feel unsatisfactory: reader and writer monads are not instances of state monads
and state monads are not combinations of reader and writer monads.

In this paper we introduce a generalization of state monads, which we call update monads,
that overcome exactly this underachievement. Update monads are compatible compositions
of reader and writer monads, they are specified by a set, a monoid and an action, defining a
reader monad, a writer monad and a distributive law of the latter over the former. They
collect computations that take an initial state to pair of an update (that is not applied!) and
a return value.

We also discuss a dependently typed generalization of update monads. Dependently typed
update monads arise from cointerpreting directed containers, by which we mean an extension
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2 Update Monads: Cointerpreting Directed Containers

of an interpretation of the opposite of the category of containers into the category of set
functors. Directed containers [2] are a description of comonoids in the category of containers
and characterize those containers whose interpretation carries a comonad structure. In a
directed container, each state has its own set of updates that are considered “safe” for that
state.

The paper is organized as follows. We begin Section 2 by recapitulating reader, writer and
state monads. We then introduce update monads, show that reader and writer monads are
instances of update monads and that state monads related to them in an important way; we
also discuss algebras of update monads. Next, we show that update monads are compatible
compositions of reader and writer monads, which leads to a different characterization of
their algebras. We also briefly discuss update monad maps. In Section 3, we look at the
dependently typed generalization of update monads that results from cointerpreting directed
containers. In Section 4, we compare update monads to a generalization of state monads by
Kammar and Plotkin.

For self-containedness of the paper, in Appendix A, we review monoids, actions, monads
and compatible compositions of monads. In Appendix B, we give a detailed proof of the
main theorem of the paper. In Appendix C, we show how algebras of update monads can be
described as models of Lawvere theories.

In this paper we develop the theory of update monads over the category Set of sets and
functions. The development in Section 2 can be easily generalized to arbitrary Cartesian
closed categories. The development in Section 3 can be similarly carried out in locally
Cartesian closed categories.

2 Unifying reader, writer, state monads

2.1 Reader, writer, state monads

We recall the three “classic” families of monads of functional programming [15]—the reader,
writer and state monads.

Reader monads

Every set S (of states) defines a monad (the reader monad) via

T X = S → X

η : ∀{X}. X → S → X

η x = λs. x

µ : ∀{X}. (S → (S → X))→ S → X

µf = λs. f s s

Here and in the following, we use Agda’s [12] syntax of braces for implicit arguments, i.e.,
for those arguments we may want to skip when they are inferrable from other arguments.



D. Ahman and T. Uustalu 3

Writer monads

Every monoid (P, o,⊕) (of updates) defines a monad (the writer monad, also sometimes
called the complexity monad) via

T X = P ×X

η : ∀{X}. X → P ×X
η x = (o, x)

µ : ∀{X}. P × (P ×X)→ P ×X
µ (p, (p′, x)) = (p ⊕ p′, x)

Note that we would not be able to do with just a set P to get a monad on this underlying
functor, we need both the unit and multiplication of the monoid to the define the unit and
multiplication and the monoid laws to prove the monad laws.1

State monads

Every set S defines a monad (the state monad) via

T X = S → S ×X

η : ∀{X}. X → S → S ×X
η x = λs. (s, x)

µ : ∀{X}. (S → S × (S → S ×X))→ S → S ×X
µf = λs. let (s′, g) = f s;

(s′′, x) = g s′

in (s′′, x)

The usual explanation of the state monad is the following. T X = S → S ×X is the set
of computations each taking an initial state to a pair of a final state and a return value.

Unifying the three?

Notice the similarities between these monads. The reader monad resembles the state monad,
when we ignore the final, mutated, state. The writer monad resembles the state monad,
when we ignore the initial state and require the final state to have monoidal structure. (This
said, in the case of the writer monad, the values written accumulate, but in the case of the
state monad, they replace each other.) Could we possibly unify the three properly? We can.
We do this in the next section using monoid actions.

2.2 Update monads
Given a set S and a monoid (P, o,⊕) together with a right action ↓: S × P → S of the
monoid on the set (in this paper we call such a triple a (right) act2), we are interested in the

1 The monoid structure on P induces also a different non-isomorphic monad defined by T rX = X × P ,
ηr x = (x, o), µr ((x, p), p′) = (x, p ⊕ p′). The order of P and X in the product T r X is not important
here, as product is symmetric. But µr adds the two given monoid elements in the order reverse to µ.

2 A set that a fixed monoid (P, o,⊕) acts on is often called a (P, o,⊕)-set or a (P, o,⊕)-act. We are
interested in varying both the set S and the monoid (P, o,⊕) at the same time.
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4 Update Monads: Cointerpreting Directed Containers

following monad, which we call the update monad for the act (S, (P, o,⊕), ↓).

T X = S → P ×X

η : ∀{X}. X → S → P ×X
η x = λs. (o, x)

µ : ∀{X}. (S → P × (S → P ×X))→ S → P ×X
µf = λs. let (p, g) = f s;

(p′, x) = g (s ↓ p)
in (p ⊕ p′, x)

A computation over X, i.e., an element of T X, is a function taking an initial state to an
update produced and a return value. Notice that rather than returning the result of applying
the update to the initial state, i.e., the final state, the function returns the actual update
itself. These updates are only ever applied by the multiplication µ. This operation applies to
the initial state s the update p defined by s, in order to thus obtain a new state s ↓ p that
then further determines a new update p′ to be composed with p.

I Example 1. It turns out that reader and writer monads are special cases of update monads.
We get the reader monad for a given set S when we take (P, o,⊕) and ↓ trivial, i.e.,

P = 1. We then have T X = S → 1×X ∼= S → X.
The writer monad for a given monoid (P, o,⊕) is obtained by taking S and ↓ trivial, i.e.,

S = 1, so that T X = 1→ P ×X ∼= P ×X.

I Example 2. State monads fail to be a special case of update monads, but they are very
close in an important way.

Recall that the free monoid on any semigroup3 (S, •) is (P, o,⊕) where

P = 1 + S

o = inl ∗

inl ∗ ⊕ p = p

inr s ⊕ inl ∗ = inr s
inr s ⊕ inr s′ = inr (s • s′)

The actions of this monoid on any set S are determined by the actions of the inducing
semigroup (S, •) on S. Recall that, in particular, • is an action of (S, •) on S, so it also
induces an action of (P, o,⊕) on S.

Notice also that, for any set S, the “overwrite” operation • defined by s • s′ = s′ gives a
semigroup structure on S.4

Now let us fix some set S and let (T, η, µ) be the state monad for S. Let (P, o,⊕) be
the free monoid on the overwrite semigroup (S, •) and let ↓ be the action of (P, o,⊕) on S
induced by •. Let (T ◦, η◦, µ◦) be the update monad for S, (P, o,⊕) and ↓.

It turns out that the state monad (T, η, µ) is characterized as the splitting of the following
monad idempotent idem on (T ◦, η◦, µ◦) that replaces the nil update with overwriting the

3 Notice that we are talking about the free monoid on a semigroup here, not the free monoid on a set!
This is about adjoining a unit element to the semigroup.

4 In semigroup/monoid literature [10], this is called the right zero semigroup structure.
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given state by itself:

idem : ∀{X}. (S → (1 + S)×X)→ S → (1 + S)×X
idem f = λs. let (p, x) = f s in (inr (case p of (inl ∗ 7→ s; inr s′ 7→ s′)), x)

Indeed the monad (T, η, µ) embeds into (T ◦, η◦, µ◦) via a monad map sec:

sec : ∀{X}. (S → S ×X)→ S → (1 + S)×X
sec f = λs. let (s′, x) = f s in (inr s′, x)

The monad (T ◦, η◦, µ◦) also projects onto the state monad (T, η, µ) via a monad map retr:

retr : ∀{X}. (S → (1 + S)×X)→ S → S ×X
retr f = λs. let (p, x) = f s in (case p of (inl ∗ 7→ s; inr s′ 7→ s′), x)

And it is easy to check that sec ◦ retr = idem and retr ◦ sec = id.

I Example 3. We mentioned earlier that the functor T◦ given by T◦X = P◦ ×X is not a
monad, if P◦ is just a set. We need the unit and multiplication of a monoid structure on P◦
for T◦ to carry the unit and multiplication of a monad.

But in fact on any set P◦ we have the the overwrite semigroup structure. Hence T◦ is at
least a “monad without a unit” with multiplication µ◦ : P◦ × (P◦ ×X)→ P◦ ×X given by
µ◦ (p, (p′, x)) = (p′, x).

We get a monad from (T◦, µ◦) by freely adjoining a unit. Concretely, we get a monad
(T, η, µ) by defining

T X = X + P◦ ×X (∼= (1 + P◦)×X)

η : ∀{X}. X → X + P◦ ×X
η x = inlx

µ : ∀{X}. (X + P◦ ×X) + P◦ × (X + P◦ ×X)→ X + P◦ ×X
µ (inl c) = c

µ (inr (p, (inlx))) = inr (p, x)
µ (inr (p, (inr (p′, x)))) = inr (p′, x)

This is (up to isomorphism) the update monad for the set 1, the free monoid on the
overwrite semigroup on P◦ and the trivial action. We call it the overwrite monad.

I Example 4. For any set S and monoid (P, o,⊕), we have an action that does nothing:
s ↓ p = s. The multiplication operation of the corresponding update monad uses the same
state twice:

T X = S → P ×X

η : ∀{X}. X → S → P ×X
η x = λs. (o, x)

µ : ∀{X}. (S → P × (S → P ×X))→ S → P ×X
µf = λs. let (p, g) = f s;

(p′, x) = g s

in (p ⊕ p′, x)
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6 Update Monads: Cointerpreting Directed Containers

I Example 5. Here is a cute example of update monads of with a clear programming
meaning.

Let (P, o,⊕) be the free monoid on a given set S explicitly defined by

P = S∗

o = []
ss ⊕ ss′ = ss ++ ss′

i.e., the set of lists over S, the empty list and concatenation. As the action ↓ : S → S∗ → S

we want to use

s ↓ ss = last (s :: ss)

(Note that :: can be given the type S × S∗ → S+ and last is a total function S+ → S.)
We get the following state-logging monad (similar to the one considered by Piróg and

Gibbons [13], except that it only allows finite traces):

T X = S → S∗ ×X

η : ∀{X}. X → S → S∗ ×X
η x = λs. ([], x)

µ : ∀{X}. (S → S∗ × (S → S∗ ×X))→ S → S∗ ×X
µf = λs. let (ss, g) = f s;

(ss′, x) = g (last (s :: ss))
in (ss ++ ss′, x)

A computation takes an initial state to the list of all intermediate states (excluding the
initial state!) and the value returned.

Here and in the following we use Haskell notation for lists, with [] for nil, :: for cons and
++ for append. In addition we will write escn for taking n first elements of a list es, nbes for
taking n last elements, and es/n for removing n last elements of es (if len es ≤ n, then all
elements are taken resp. removed).

I Example 6. Here is a minimally more involved concrete example of an update monad—for
no-removal buffers of a fixed size N . This is the definition:

T X = E≤N → E∗ ×X

η : ∀{X}. X → E≤N → E∗ ×X
η x = λes. ([], x)

µ : ∀{X}. (E≤N → E∗ × (E≤N → E∗ ×X))→ E≤N → E∗ ×X
µf = λes. let (es′, g) = f es;

(es′′, x) = g (es ++ (es′c(N − len es)))
in (es′ ++ es′′, x)

The buffer is used to store values drawn from some given set E and has size N . Therefore,
we take as the states S = E≤N lists of values of length at most N (for values stored
in the buffer). The updates P = E∗ are simply lists of values to write into the buffer,
with the nil update and composition of two updates given by o = [], es ⊕ es′ = es ++
es′. The action, defined by es ↓ es′ = es ++ (es′c(N − len es)), updates the buffer with
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additional values, as long as there is free space. The updates that do not fully fit into the
buffer are performed partially, so some suffix of the list of values to write may be dropped
“silently”. (An alternative buffer might prefer new values to old, which corresponds to choosing
es ↓ es′ = Nb(es ++ es′).)

I Example 7. To implement an unbounded stack, we can choose the set of states to be
S = E∗ (values stored in the stack) and as the set of updates use P = (1 + E)∗, o = [],
ps ⊕ ps′ = ps ++ ps′ (sequences of pop and push instructions). The intended action ↓ is then

es ↓ [] = es

es ↓ (inl ∗ :: ps) = es/1 ↓ ps
es ↓ (inr e :: ps) = (es ++ [e]) ↓ ps

(notice that popping from the empty stack removes no element).
Alternatively, we can be more abstract in regards to updates and identify all those

sequences of pop and push instructions that have the same net effect. An update is then a
number of elements to remove from the stack and a list of new elements to add. We define

P ′ = Nat× E∗
o′ = (0, [])
(n, es) ⊕′ (n′, es′) = (n+ (n′ −. len es), es/n′ ++ es′)

es ↓′ (n′, es′) = es/n′ ++ es′

The monoid here is a Zappa-Szép product [5] of the monoids (Nat, 0,+) and (E∗, [],++). It
arises from two matching actions of the two monoids on each other.

In Section 3, we will see that a dependently typed version of update monads can disallow
over- and underflowing updates.

2.3 Algebras of update monads
By the definition of an algebra of a monad (see Appendix A.2), an algebra for the update
monad for an act (S, (P, o,⊕), ↓) is a set X with an operation

act : (S → P ×X)→ X

satisfying the equations

x = act (λs. (o, x))
act (λs. (p s, act (λs′. (p′ s s′, x s s′)))) = act (λs. (p s ⊕ p′ s (s ↓ p s), x s (s ↓ p s)))

However it is quite easy to see that the same thing can also be described as a set X with
two operations (see the interdefinability below)

lkp : (S → X)→ X

upd : P ×X → X

satisfying the equations

x = lkp (λs. upd (o, x))
upd (p, upd (p′, x)) = upd (p⊕ p′, x)
lkp (λs. upd (p s, lkp (λs′. x s s′))) = lkp (λs. upd (p s, x s (s ↓ p s)))

TYPES 2013



8 Update Monads: Cointerpreting Directed Containers

The intuition behind the design of the equation system is that every algebra expression should
be rewritable into the form lkp (λs. upd (p s, x s)). Seen as rewrite rules, the 1st equation
enables one to prefix a given algebra expression with a pair of occurrences of lkp and upd
whereas the 2nd and 3rd equations allow removal of all subsequent occurrences of lkp and
upd.

The operations

act : (S → P ×X)→ X

and

lkp : (S → X)→ X

upd : P ×X → X

satisfying their respective axioms are interdefinable via

lkp (λs. x s) = act (λs. (o, x s))
upd (p, x) = act (λs. (p, x))

and

act (λs. (p s, x s)) = lkp (λs. upd (p s, x s))

2.4 Update monads as a compatible composition of reader and writer
monads

While state monads cannot be described as compositions of reader and writer monads, update
monads are exactly that!

The update monad (T, η, µ) for (S, (P, o,⊕), ↓) is a compatible composition (in the sense
of the definition given in Section A.3) of the reader monad (T0, η0, µ0) for S and the writer
monad (T1, η1, µ1) for (P, o,⊕): the underlying functor T is the functor composition T0 · T1
and the unit η and multiplication µ relate to those of the reader and writer monad in a
certain way, which implies, in particular, that T0 · η1 is a monad map from (T0, η0, µ0) to
(T, η, µ) and η0 · T1 is one from (T1, η1, µ1) to (T, η, µ).

The corresponding distributive law θ of (T1, η1, µ1) over (T0, η0, µ0) is determined by the
action ↓:

θ : ∀{X}. P × (S → X)→ S → P ×X
θ (p, f) = λs. (p, f (s ↓ p)) (1)

Moreover, every compatible composition of these two monads is an update monad, since
every distributive law θ of (T1, η1, µ1) over (T0, η0, µ0) defines an action ↓ satisfying (1) via

↓ : S × P → S

s ↓ p = snd (θ {S} (p, id {S}) s) (2)

while it follows directly from the definition of θ that

p = fst (θ {S} (p, id {S}) s) (3)

Substituting the two definitions into each other the other way around yields identity too,
so (1) and (2) give a bijective correspondence between the actions and the distributive laws.

I Lemma 8. For any distributive law θ of the writer monad for (P, o,⊕) over the reader
monad for S, equation (3) holds.
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I Theorem 9. Equations (1), (2) establish a bijective correspondence between the actions
of (P, o,⊕) on S and the distributive laws of the writer monad for (P, o,⊕) over the reader
monad for S.

For proofs, see Appendix B.

The trivial action s ↓ p = s corresponds to the distributive law θ (p, f) = λs. (p, f s),
which is the strength of T0.

As an instance of the general characterization of algebras of a compatible composition of
two monads in terms of their algebras, we learn that an algebra of the update monad for
(S, (P, o,⊕), ↓) can be specified as a set X carrying algebras of both the reader and writer
monad, i.e., operations

lkp : (S → X)→ X upd : P ×X → X

satisfying the conditions

x = lkp (λs. x) x = upd (o, x)
lkp (λs. lkp (λs′. x s s′)) = lkp (λs. x s s) upd (p, upd(p′, x)) = upd (p ⊕ p′, x)

plus an additional compatibility condition

upd (p, lkp (λs′. x s′)) = lkp (λs. upd (p, x (s ↓ p)))

This axiomatization of lkp and upd is quite different from the one we showed above—only
one axiom is shared—, but nonetheless equivalent. One could also argue that it is more
systematic and symmetric.

For the trivial action s ↓ p = s, the compatibility condition becomes upd (p, lkp (λs′. x s′))
= lkp (λs. upd (p, x s))—the condition of models of the tensor of the Lawvere theories for
reading and writing [9, Section 5].

It is important to notice that algebras (X, upd) of the reader monad are nothing but sets
with a left action of (P, o,⊕) while (S, ↓) is a set with a right action of (P, o,⊕).

2.5 Maps between update monads
What are maps between update monads like? It turns out that, for a suitable notion of act
maps, every map between two given acts in the reverse direction defines a map between the
corresponding update monads, but this mapping of act maps to monad maps is generally
neither injective nor surjective.

We choose to define a map between two acts (S′, (P ′, o′,⊕′), ↓′) and (S, (P, o,⊕), ↓) to
be a function t : S′ → S together with a monoid homomorphism q : (P, o,⊕)→ (P ′, o′,⊕′)
(notice the direction of q!) such that

t (s ↓′ q p) = t s ↓ p

holds.5
These pairs (t, q) are in a bijective correspondence with pairs (τ0, τ1) where τ0 is a map

between the reader monads (T0, η0, µ0) and (T ′0, η′0, µ′0) for S0 resp. S′0 and τ1 is a map

5 More customarily, a map between these acts would be taken to be a function t : S′ → S together with a
monoid homomorphism q : (P ′, o′,⊕′)→ (P, o,⊕) satisfying the condition t (s ↓′ p) = t s ↓ q p, see, e.g.,
[10, p. 54].
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10 Update Monads: Cointerpreting Directed Containers

between the writer monads (T1, η1, µ1) and (T ′1, η′1, µ′1) for (P, o,⊕) resp. (P, o′,⊕′) satisfying
the condition

T1 · T0
τ1·τ0 //

θ

��

T ′1 · T ′0

θ′

��
T0 · T1 τ0·τ1

// T ′0 · T ′1

where θ and θ′ are the distributive laws defined by ↓ resp. ↓′.
Acts and act maps form a category.
Every act map (t, q) between (S′, (P ′, o′,⊕′), ↓′) and (S, (P, o,⊕), ↓) determines a monad

map τ between the corresponding update monads (T, η, µ) and (T, η′, µ′) via

τ : ∀{X}. (S → P ×X)→ S′ → P ′ ×X
τ f = λs. let (p, x) = f (t s) in (q p, x)

extending the mapping of acts to monads into a functor from the opposite of the category of
acts to the category of monads on Set.

This functor is neither faithful nor full. To see the failure of faithfulness, let S be any set,
but S′ = 0, and let (P, o,⊕), (P ′, o′,⊕′) be arbitrary monoids with more than one monoid
map between them. Let ↓ be arbitrary; as ↓′: S′ × P ′ → S′ we can only choose the empty
function. Now there is exactly one map t : S′ → S, namely the empty function. For any
monoid map q : (P, o,⊕)→ (P ′, o′,⊕′), the pair (t, q) is an act map, but the corresponding
map τ between the update monads, with type τ : ∀{X}. (S → P × X) → S′ → P ′ × X,
sends any given map f to the empty map irrespective of the choice of q.

A simple counterexample to fullness is obtained by considering the reader monad for
a given S, the update monad extension of the state monad for S (the update monad of
Example 2) and the more interesting one of the two canonical embeddings between them.
Concretely, we take S to be an arbitrary non-trivial set (i.e., not 0, not 1) and S′ = S. We
let (P, o,⊕) and ↓ be trivial (i.e., P = 1) and we let (P ′, o′,⊕′) and ↓′ be the free monoid on
the overwrite semigroup on S and the action of P ′ on S given by overwriting. We define
τ : ∀{X}. (S → 1×X)→ S → (1 + S)×X by τ f = λs. let (∗, x) = f s in (inr s, x). Now τ

is a monad map, but it is not the image of any act map (t, q).

3 A dependently typed generalization

Recall the fixed-size no-removal buffer and stack of Examples 6 and 7. They can overflow
and underflow. This raises a natural question: Is it possible to restrict the updates so that
this is guaranteed to not happen?

This cannot be done with the definition given in Section 2.2. The reason is the non-
dependence of updates on states. To remedy this, we now define a dependently-typed
generalization of update monads. It is related to Abbott, Altenkirch and Ghani’s containers [1]
(equivalent to (simple, or non-dependent) polynomials [8]).

We recall that a container is a set S together with a S-indexed family P . A map between
two containers (S, P ) and (S′, P ′) is given by functions t : S → S′ and q : Π {s : S}. P ′ (t s)→
P s. Containers and container morphisms form a monoidal category Cont.

Any container determines a set functor JS, P Kc (its interpretation) by

JS, P Kc X = Σs : S. P s→ X

JS, P Kc h (s, v) = (s, h ◦ v)
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By associating a map (t, q) between containers (S, P ) and (S′, P ′) with a natural transfor-
mation Jt, qKc between the functors JS, P Kc and JS′, P ′Kc by

Jt, qKc (s, v) = (t s, v ◦ q {s})

the mapping J−Kc is extended into a fully faithful monoidal functor from Cont to [Set,Set].
In our previous work with Chapman [2], we introduced directed containers as characteri-

zation of containers that are comonads. A directed container is similar to an act, except that
the monoid carrier and operations depend on elements of the set.

A directed container is a set S together with a S-indexed family P and operations

↓ : Πs : S. P s→ S

o : Π{s : S}. P s
⊕ : Π{s : S}.Πp : P s. P (s ↓ p)→ P s

satisfying the equations

s ↓ o = s

s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

p ⊕ o = p

o ⊕ p = p

(p ⊕ p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)

Observe that, on the level of terms (with implicit arguments suppressed) these five equations
are exactly those of a monoid and an action. But the typing is different. In fact, the
4th equation is only well-typed on the assumption of the 1st equation and similarly the
well-typedness of the 5th equation depends on a proof of the 2nd equation. (In the renderings
above, this is invisible, as we have also suppressed type-index conversions.) If none of P s,
o {s} and p ⊕ {s} p′ actually depends on s, the directed container is an act. If s ↓ p = s,
then it is a set together with a family of monoids.

A map between directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) is a map (t, q)
between the underlying containers (S, P ) and (S′, P ′) such that

t (s ↓ q p) = t s ↓′ p
o = q o′
q p ⊕ q p′ = q (p ⊕′ p′)

These equation look like those for a monoid map and an action map, but are typed finer. In
particular, the 3rd equation is well-typed on the assumption of the 1st equation. If the two
directed containers are in fact acts and q {s} p does not actually depend on s, then q is an
act map.

Directed containers and directed container maps form a category DCont that turns out
to be isomorphic to the category Comonoids(Cont) of comonoid objects in the monoidal
category Cont.

This isomorphism together with monoidality of the functor J−Kc implies that the functor
J−Kc : Cont → [Set,Set] lifts to a functor J−Kdc from DCont ∼= Comonoids(Cont) to
Comonads(Set) ∼= Comonoids([Set,Set]) interpreting directed containers into comonads.
From fully faithfulness of J−Kc it follows that J−Kdc is fully faithful too, i.e., the maps between
the interpretations of two directed containers are in a bijection between the maps between
these directed containers. More, J−Kdc is the pullback of J−Kc along the forgetful functor
U : Comonads(Set)→ [Set,Set], meaning that directed containers are in fact exactly the
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containers whose interpretation carries a comonad structure. This is summarized in the
following diagram.

DCont
∼= Comonoids(Cont) U //

y

J−Kdc f.f.
��

Cont mon.

J−Kc f.f., mon.

��Comonads(Set)
∼= Comonoids([Set,Set]) U

// [Set,Set] mon.

For this paper, we have a reason to refocus from interpretation to “cointerpretation”. Let
us assign to every container (S, P ) a set functor 〈〈S, P 〉〉c (its cointerpretation) by setting

〈〈S, P 〉〉c X = Πs : S. P s×X
〈〈S, P 〉〉c h f = λs. let (p, x) = f s in (p, h x)

By associating with any container map (t, q) between (S′, P ′) and (S, P ) a natural transfor-
mation 〈〈t, q〉〉c between 〈〈S, P 〉〉c and 〈〈S′, P ′〉〉c, which is easily done by taking

〈〈t, q〉〉c f = λs. let (p, x) = f (t s) in (q {s} p, x)

we extend the mapping 〈〈−〉〉c to a functor 〈〈−〉〉c between Contop and [Set,Set].
The functor 〈〈−〉〉c : Contop → [Set,Set] is not as well-behaved as J−Kc : Cont →

[Set,Set]. First of all, 〈〈−〉〉c fails to be monoidal, it is only lax monoidal. Second, it is
neither faithful nor full.

Nonetheless, the mere lax monoidality of 〈〈−〉〉c is enough to obtain a canonical cointer-
pretation mapping of directed containers into monads. It suffices to note that DContop ∼=
(Comonoids(Cont))op ∼= Monoids(Contop) and Monads(Set) ∼= Monoids([Set,Set]).
Lax monoidality of 〈〈−〉〉c : Contop → [Set,Set] implies that 〈〈−〉〉c sends monoids to
monoids and lifts to a functor 〈〈−〉〉dc : DContop →Monads(Set). This is summarized in
the following diagram where the square commutes, but is not a pullback.

DContop

∼= (Comonoids(Cont))op

∼= Monoids(Contop) U //

〈〈−〉〉dc

��

Contop mon.

〈〈−〉〉c lax mon.

��Monads(Set)
∼= Monoids([Set,Set]) U

// [Set,Set] mon.

Explicitly, the functor 〈〈−〉〉dc sends a directed container (S, P, ↓, o,⊕) to the monad
(T, η, µ) (the corresponding (dependently typed) update monad) given by

T X = 〈〈S, P 〉〉c X = Πs : S. P s×X

η : ∀{X}. X → Πs : S. P s×X
η x = λs. (o, x)

µ : ∀{X}. (Πs : S. P s× (Πs′ : S.P s′ ×X))→ Πs : S. P s×X
µf = λs. let (p, g) = f s;

(p′, x) = g (s ↓ p)
in (p ⊕ p′, x)
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On the level of terms, the definitions of the unit and multiplication look exactly as those we
gave in Section 2.2 for the update monad for an act, but their types are finer.

A map (t, q) between directed containers (S′, P ′, ↓′, o′,⊕′) and (S, P, ↓, o,⊕) is sent by
〈〈−〉〉dc to the natural transformation 〈〈t, q〉〉dc = 〈〈t, q〉〉c between the functors 〈〈S, P 〉〉c and
〈〈S′, P ′〉〉c, which is also a monad map between 〈〈S, P, ↓, o,⊕〉〉dc and 〈〈S′, P ′, ↓′, o′,⊕′〉〉dc.
This way of specifying maps between dependently typed update monads generalizes the one
we described in Section 2.5 for maps between simply typed update monads.

The intuitive advantage of dependently typed update monads over simply typed update
monads lies in the idea of updates enabled (or safe) in a state. In the simply typed case, any
update has to apply to any state.

In the dependently typed setting, any initial state s : S determines its own set of updates
P s enabled in it. And, according to the type of ↓, only those updates are applicable to s.
This means that we are not forced to invent outcomes for updates that should morally only
be allowed in some states.

I Example 10. In the example of the buffer (Example 6), we chose to write only a prefix of
a given list into the buffer, if it had no space left for the full list. This is clearly a dangerous
design, as values get discarded silently. Another option would have been to introduce a
special error state. But with a dependently typed update monad, we can do much better.

The non-overflowing fixed-size no-removal buffer monad is given by the following data:

T X = Πes : E≤N . E≤N−len es ×X

η : ∀{X}. X → Πes : E≤N . E≤N−len es ×X
η x = λes. []

µ : ∀{X}. (Πes : E≤N . E≤N−len es × (Πes′ : E≤N . E≤N−len es′ ×X))→
Πes : E≤N . E≤N−len es ×X

µf = λes. let (es′, g) = f es;
(es′′, x) = g (es ++ es′)

in (es′ ++ es′′, x)

The states are lists of length at most n as before: S = E≤N . But the updates, acceptable
lists of values to write, now depend on these states in a natural way. Namely, for a state
es : E≤N of the buffer, the enabled updates are P es = E≤N−len es, i.e., lists that can be
appended to es without exceeding the length limit N . The means that the action does not
have to truncate, it is just concatenation: es ↓ es′ = es ++ es′.

I Example 11. Similarly, we can amend our two stack monads from Example 7 to be
non-underflowing.

As before, the set of states S = E∗ is given by lists of elements of E. Regarding the
monoid of updates, we can define P es = {ps : (1 + E)∗ | removes ps ≤ len es} where

removes [] = 0
removes (inl ∗ :: ps) = removes ps+ 1
removes (inr e :: ps) = removes ps−. 1

Alternatively, we can define P ′ es = [0..len es]× E∗.

Differently from simply typed update monads, dependently typed update monads subsume
state monads.
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14 Update Monads: Cointerpreting Directed Containers

I Example 12. Given a set S, define P s = S, s ↓ s′ = s′, o {s} = s, s′ ⊕ {s} s′′ = s′′.
The update monad for this directed container is the state monad for S.
In Example 2, we noted that the state monad for S fails to be a simply typed update

monad, because P = S is just a semigroup, not a monoid. With the dependently typed
notion, we can afford a different unit element o {s} = s : P s = S for each s : S, overcoming
this obstacle.

The monad morphisms idem, sec and retr are morphisms of dependently typed update
monads.

An (EM-)algebra for the dependently typed update monad for the directed container
(S, P, ↓, o,⊕) is a set X with an operation

act : (Πs : S. P s×X)→ X

satisfying the equations

x = act (λs. (o {s}, x))
act (λs. (p s, act (λs′. (p′ s s′, x s s′)))) = act (λs. (p s ⊕ {s} p′ s (s ↓ p s), x s (s ↓ p s)))

Again the equations look exactly the same as in the simply typed case, but the types are
different.

It is not clear to us whether dependently typed update monads admit a useful decompo-
sition similar to the decomposition of simple update monads into reader and writer monads.
One possibility is to resort to relative monads of Altenkirch et al. [4]: dependently typed
update monads can be described as compatible compositions of certain relative monads.

Given a directed container (S, P, ↓, o,⊕). Define J0 : [S,Set]→ Set by J0 X = Πs : S.X s

and J1 : Set → [S,Set] by J1 X s = X (notice that J0 is right adjoint to J1). Now on J0
we have a rather trivial but nonetheless reader-like relative monad (T0, η0, (−)∗0) given by
T0 X = Πs : S.X s = J0 X, η0 {X} = id {J0 X}, k∗0 = k. On J1 at the same time we can define
a writer-like relative monad (T1, η1, (−)∗1) by T1 X s = P s × X, η1 {X} {s}x = (o {s}, x),
k∗1 {s} (p, x) = let (p′, y) = k {s ↓ p}x in (p ⊕ {s} p′, y). The dependently typed update
monad is a compatible composition of the two relative monads.

4 Kammar and Plotkin’s generalization of state monads

Kammar and Plotkin6 have proposed a generalization of state monads that is related to ours.
Similarly to us, they employ monoids and monoid actions. Kammar and Plotkin’s monad for
an act (S, (P, o,⊕), ↓) is defined by

T X = Πs : S. (s ↓ P )×X

η : ∀{X}. X → Πs : S. (s ↓ P )×X
η x = λs. (s, x)

µ : ∀{X}. (Πs : S. (s ↓ P )× (Πs′ : S. (s′ ↓ P )×X))→ Πs : S. (s ↓ P )×X
µf = λs. let (s′, g) = f s;

(s′′, x) = g s′

in (s′′, x)

6 O. Kammar and G. Plotkin. Take action for your state: effective conservative restrictions. Slides from
Scottish Programming Language Seminar, Strathclyde, Nov. 2010.
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Here s ↓ P = {s ↓ p | p ∈ P} ⊆ S is the orbit of s along the action ↓ of the monoid (P, o,⊕)
on the set S. Notice that η and µ are defined just as for the state monad for S, only the
typing is finer. In particular, the monoid structure and the action only appear in the types.

Reader and state monads are special cases of this unification, while writer monads are
not. (Remember that, in contrast, simply typed update monads cover reader and writer
monads, but not state monads.)

Kammar and Plotkin’s monad for (S, (P, o,⊕), ↓) turns out to be the middle monad in
the epi-mono factorization of the obvious monad map τ between the simply typed update
monad for (S, (P, o,⊕), ↓) and the state monad for S. For a given state, τ just applies to a
given initial state the update that it produces.

τ : ∀{X}. (S → P ×X)→ S → S ×X
τ f = λs. let (p, x) = f s in (s ↓ p, x)

Just as the state monad, Kammar and Plotkin’s monad is an instance of a dependently
typed update monad. The appropriate directed container is (S, P ′, ↓′, o′,⊕′) where

P ′ s = s ↓ P

↓′ : Πs : S.Πs′ : s ↓ P. S
s ↓′ s′ = s′

o′ : Π{s : S}. s ↓ P
o′ {s} = s

⊕′: Πs : S.Πs′ : s ↓ P. s′ ↓ P → s ↓ P
s′ ⊕′ {s} s′′ = s′′

5 Conclusion and future work

We have presented some facts about a class of monads that we call update monads. We hope
that those convince the reader that the concept is meaningful and elegant. Although we
arrived at update monads thinking about cointerpretation of directed containers, in hindsight
we think that they are above all a simple, but instructive unification of the reader, writer
and state monads. This unification helps explain how they and some further special monads
interrelate and why.

As future work, we wish to generalize this work to monoidal closed categories (replacing
unique comonoids with arbitrary comonoids) and to presheaf categories (replacing directed
containers with directed indexed containers).
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A Background

A.1 Monoids, actions
We recall that a monoid is a set P together with two operations

o : P
⊕ : P × P → P

satisfying

p ⊕ o = p

o ⊕ p = p

(p ⊕ p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)
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A map between two monoids (P, o,⊕) and (P ′, o′,⊕′) is a map

q : P → P ′

satisfying

q o = o′
q (p ⊕ p′) = q p ⊕′ q p′

A right action of a monoid (P, o,⊕) on a set S is an operation

↓ : S × P → S

satisfying the conditions

s ↓ o = s

s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

Similarly, a left action of (P, o,⊕) on S is an operation ↑ : P ×S → S satisfying o ↑ s = s,
(p ⊕ p′) ↑ s = p ↑ (p′ ↑ s).

A.2 Monads, monad algebras
We recall the definitions of monads and algebras for monads. For thorough expositions, we
refer the reader to the books by Barr and Wells [6, Ch. 3] and Mac Lane [11, § VI].

A monad on a category C is given by an endofunctor T on C and natural transformations
η : Id→ T and µ : T · T satisfying the conditions

T

T ·η
��

T · T
µ
// T

T
η·T // T · T

µ

��
T

T · T · T
µ·T //

T ·µ
��

T · T
µ

��
T · T

µ
// T

A map between monads (T, η, µ) and (T ′, η′, µ′) on the same category C is a natural
transformation τ : T → T ′ satisfying the conditions

Id
η

��

η′

��
T

τ
// T ′

T · T

µ

��

τ ·τ // T ′ · T ′

µ′

��
T

τ
// T ′

An (Eilenberg-Moore) algebra of a monad (T, η, µ) is an object A together with a map
a : T A→ A satisfying the conditions

A
η A // T A

a

��
A

T (T A) µA //

T a

��

T A

a

��
T A

a
// A

For any object A, there is a free algebra of the monad (T, η, µ) on A: the algebra (T A, µA)
together with the map η A : A→ T A.
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A.3 Distributive laws and compatible compositions of monads
Distributive laws, compatible compositions and liftings are due to Beck [7]. They are also
discussed in the book of Barr and Wells [6, Ch. 9].

A distributive law between two monads (T0, η0, µ0) and (T1, η1, µ1) on the same category
C is a natural transformation

θ : T1 · T0 → T0 · T1

satisfying the conditions

T1
T1·η0

{{

η0·T1

##
T1 · T0

θ
// T0 · T1

T1 · T0 · T0

T1·µ0

��

θ·T0 // T0 · T1 · T0
T0·θ // T0 · T0 · T1

µ0·T1

��
T1 · T0

θ
// T0 · T1

T0
η1·T0

{{

T0·η1

##
T1 · T0

θ
// T0 · T1

T1 · T1 · T0

µ1·T0

��

T1·θ // T1 · T0 · T1
θ·T1 // T0 · T1 · T1

T0·µ1

��
T1 · T0

θ
// T0 · T1

A compatible composition of monads (T0, η0, µ0) and (T1, η1, µ1) on C is a monad structure
(η, µ) on the endofunctor T0 · T1 satisfying the conditions

Id η0 // T0

T0·η1

��
Id

η
// T0 · T1

T0 · T0
µ0 //

T0·η1·T0·η1

��

T0

T0·η1

��
T0 · T1 · T0 · T1 µ

// T0 · T1

Id η1 // T1

η0·T1

��
Id

η
// T0 · T1

T1 · T1
µ1 //

η0·T1·η0·T1

��

T1

η0·T1

��
T0 · T1 · T0 · T1 µ

// T0 · T1

T0 · T1
T0·η1·η0·T1

ww
T0 · T1 · T0 · T1 µ

// T0 · T1

Notice that the first two conditions say that T0 · η1 is a morphism between the monads
(T0, η0, µ0) and (T0 · T1, η, µ) and the next two say that η0 · T1 is a morphism between the
monads (T1, η1, µ1) and (T0 · T1, η, µ). Notice also that the 1st and 3rd conditions really say
the same, namely, that η = η0 · η1. The most significant condition is the 5th, the so-called
middle unital law.

Distributive laws and compatible compositions are in a bijective correspondence. A
distributive law θ determines a compatible composition (η, µ) via

η = Id η0·η1 // T0 · T1

µ = T0 · T1 · T0 · T1
T0·θ·T1 // T0 · T0 · T1 · T1

µ0·µ1 // T0 · T1

Conversely, a compatible composition (η, µ) defines a distributive law θ via

θ = T1 · T0
η0·T1·T0·η1 // T0 · T1 · T0 · T1

µ // T0 · T1
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Given a distributive law θ between two monads (T0, η0, µ0) and (T1, η1, µ1), a pair of their
algebras (A, a0) and (A, a1) with the same carrier is matching, if it satisfies the condition

T1 (T0 A)

T1 a0

��

θ A // T0 (T1 A)T0 a1 // T0 A

a0

��
T1 A a1

// A

Matching pairs of algebras are in a bijective correspondence with algebras of the compatible
composition.

A matching pair of algebras (A, a0, a1) defines an algebra (A, a) via

a = T0 (T1 A) T0 a1 // T0 A
a0 // A

An algebra (A, a) induces a matching pair (A, a0, a1) via

a0 = T0 A
T0 (η1 A) // T0 (T1 A) a // A

a1 = T1 A
η0 (T1 A) // T0 (T1 A) a // A

The counterpart under this bijection of the free algebra (T0 (T1 A), µA) of the compatible
composition on A is the matching pair (T0 (T1 A), µ̄0 A, µ̄1 A) where

µ̄0 = T0 · T0 · T1
µ0·T1 // T0 · T1

µ̄1 = T1 · T0 · T1
θ·T1 // T0 · T1 · T1

T0·µ1 // T0 · T1

B Proof of the main theorem

B.1 Proof of Lemma 8
p

=
fst ((λs′. (p, ∗)) s)

= {def. of η0}
fst ((η0 · T1) {1} (p, ∗) s)

= {distr. law eq. 1 for θ}
fst ((θ ◦ T1 · η0) {1} (p, ∗) s)

= {def. of η0}
fst (θ {1} (p, λs′. ∗) s)

= {defs. of T1, T0}
fst ((θ {1} ◦ (T1 · T0) (λs′. ∗)) (p, f) s)

= {naturality of θ}
fst (((T0 · T1) (λs′. ∗) ◦ θ {X}) (p, f) s)

= {defs. of T0, T1}
fst (θ {X}) (p, f) s)

B.2 Proof of Theorem 9
Given an action ↓, we must verify that θ : ∀{X}. T1 (T0 X) → T0 (T1 X) defined by
θ {X} (p, f) = λs. (p, f (s ↓ p)) is a distributive law.
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Proof of naturality of θ.

((T0 · T1) g ◦ θ {X}) (p, f)
= {def. of θ}

(T0 · T1) g (λs. (p, f (s ↓ p)))
= {def. of T0, T1}
λs. (p, g (f (s ↓ p)))

= {def. of θ}
θ {Y } (p, g ◦ f)

= {def. of T1, T0}
(θ {Y } ◦ (T1 · T0) g) (p, f)

Proof of distributive law equation 1 for θ.

(θ ◦ T1 · η0) {X} (p, x)
= {defs. of T1, η0}
θ {X} (p, λs′. x)

= {def. of θ}
λs. (p, (λs′. x) (s ↓ p))

=
λs. (p, x)

= {def. of η0}
(η0 · T1) {X} (p, x)

Proof of distributive law equation 2 for θ.

(θ ◦ T1 · µ0) {X} (p, f)
= {defs. of T1, µ0}
θ {X} (p, λs′. f s′ s′)

= {def. of θ}
λs. (p, f (s ↓ p) (s ↓ p))

= {def. of µ0}
(µ0 · T1) {X} (λs. λs′. (p, f (s ↓ p) (s′ ↓ p)))

= {defs. of T0, θ}
(µ0 · T1 ◦ T0 · θ) {X} (λs. (p, f (s ↓ p)))

= {def. of θ}
(µ0 · T1 ◦ T0 · θ ◦ θ · T0) {X} (p, f)

Proof of distributive law equation 3 for θ.

(θ ◦ η1 · T0) {X} f
= {def. of η1}
θ {X} (o, f)

= {def. of θ}
λs. (o, f (s ↓ o))

= {action eq. 1 for ↓}
λs. (o, f s)

= {defs. of T0, η1}
(T0 · η1) {X} f
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Proof of distributive law equation 4 for θ.

(θ ◦ µ1 · T0) {X} (p, (p′, f))
= {def. of µ1}
θ {X} (p ⊕ p′, f)

= {def. of θ}
λs. (p ⊕ p′, f (s ↓ (p ⊕ p′)))

= {action eq. 2 for ↓}
λs. (p ⊕ p′, f ((s ↓ p) ↓ p′))

= {defs. of T0, µ1}
(T0 · µ1) {X} (λs. (p, (p′, f ((s ↓ p) ↓ p′))))

= {def. of θ}
(T0 · µ1 ◦ θ · T1) {X} (p, λs. (p′, f (s ↓ p′)))

= {defs. of T1, θ}
(T0 · µ1 ◦ θ · T1 ◦ T1 ◦ θ) {X} (p, (p′, f))

Given a distributive law θ, we must verify that ↓: S × P → S defined by s ↓ p =
snd (θ {S} (p, λs′. s′) s) is an action.

Proof of action law 1 for ↓.

s ↓ o
= {def. of ↓}

snd (θ {S} (o, λs′. s′) s)
= {def. of η1}

snd ((θ ◦ η1 · T0) {S} (λs′. s′) s)
= {distr. law eq. 3 for θ}

snd ((T0 · η1) {S} (λs′. s′) s)
= {defs. of T0, η1}

snd ((λs′. (o, s′)) s)
=
s

Proof of action law 2 for ↓.

s ↓ (p ⊕ p′)
= {def. of ↓}

snd (θ {S} (p ⊕ p′, λs′. s′) s)
= {def. of µ1}

snd ((θ ◦ µ1 · T0) {S} (p, (p′, λs′. s′)) s)
= {distr. law eq. 4 for θ}

snd ((T0 · µ1 ◦ θ · T1 ◦ T1 · θ) {S} (p, (p′, λs′. s′)) s)
= {def. of T1, Lemma 8, def. of ↓}

snd ((T0 · µ1 ◦ θ · T1) {S} (p, λs′. (p′, s′ ↓ p′)) s)
= {defs. of T0, T1}

snd ((T0 · µ1 ◦ θ · T1 ◦ (T1 · T0) (λs′. (p′, s′ ↓ p′))) {S} (p, λs′. s′)) s)
= {naturality of θ}

snd ((T0 · µ1 ◦ (T0 · T1) (λs′. (p′, s′ ↓ p′)) ◦ θ) {S} (p, λs′. s′)) s)
= {Lemma 8, def. of ↓}

snd ((T0 · µ1 ◦ (T0 · T1) (λs′. (p′, s′ ↓ p′))) {S} (λs′. (p, s′ ↓ p)) s)

TYPES 2013



22 Update Monads: Cointerpreting Directed Containers

= {defs. of T0, T1}
snd ((T0 · µ1) {S} (λs′. (p, (p′, (s′ ↓ p) ↓ p′))) s)

= {defs. of T0, µ1}
snd ((λs′. (p ⊕ p′, (s′ ↓ p) ↓ p′)) s)

=
(s ↓ p) ↓ p′

Finally, we have to check that the correspondence is bijective.

s ↓′ p
= {def. of ↓′}

snd (θ {S} (p, id {S}) s)
= {def. of θ}

snd (p, id {S} (s ↓ p))
=
s ↓ p

θ′ {X} (p, f)
= {def. of θ′}
λs. (p, f (s ↓ p))

= {Lemma 8, def. of ↓}
λs. (fst (θ {S} (p, id {S}) s), f (snd (θ {S} (p, id {S}) s)))

= {defs. of T0, T1}
((T0 · T1) f ◦ θ {S}) (p, id {S})

= {naturality of θ}
(θ {X} ◦ (T1 · T0) f) (p, id {S})

= {defs. of T0, T1}
θ {X} (p, f)

C Algebras of update monads as models of Lawvere theories

In Sections 2.3 and 2.4, we showed three different equivalent definitions of algebras for the
update monad for a given act (S, (P, o,⊕), ↓). An algebra is the same as a model of the
(generally large) Lawvere theory corresponding to this monad. Each of the three definitions
corresponds to a particular presentation of this Lawvere theory.

The first presentation is given by one operation

act : S → S → P

and two equations

1 λs. ∗ // S

act

��

S × S
λ(s,f). (s,f s) //

S×act��

S × (S → S)

act×(S→S)

��

S × (S → P )
λ(s,f). (s,f s)��

S × (S → S → P )
act×(S→S→P )��

1 S → P
λ∗.λs. o
oo (S → P )× (S → S → P ) (S → P )× (S → S)

λ(f,g). (λs. f s⊕g s (s↓f s),λs. s↓f s)
oo
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The second and third resemble Melliès’s and Plotkin’s variations7 of Plotkin and Power’s
presentation of the theory of (global) state [14]. The second is given by two operations

lkp : S → 1
upd : 1→ P

satisfying

1 upd // P

o
��
1

λs. ∗
��

1 S
lkp
oo

1 upd //

upd
��

P

⊕

��

P

λ(∗,p). p
��

1× P
upd×P

// P × P

(S × S)× 1
λ(s,s′). ((s,s′),∗)

��

(S×S)×upd// (S × S)× P
λ(s,p). (s,s↓p)×P
��

S × S
S×lkp

��

(S × P )× P

λ(s,(p,p′)). ((s,p),p′)

��

S × 1
S×upd

��
S × P

λ(s,f). (s,f s)
��

S × (P × P )
S×λp. (p,p)
��

S × (S → P )
lkp×(S→P )

��

S × P
λ(s,f). (s,f s)
��

1× (S → P ) S × (S → P )
lkp×(S→P )
oo

The third has the same operations, but different equations:

1 λs. ∗ // S

lkp
��
1

S × S
λs. (s,s) //

S×lkp
��

S

lkp

��

S × 1

λs. (s,∗)
��
S

lkp
// 1

1 upd // P

o
��
1

1 upd //

upd
��

P

⊕

��

P

λ(∗,p). p
��

1× P
upd×P

// P × P

S × 1

λs. (s,∗)
��

S×upd // S × P

↓×P
��

S

lkp
��

(S × P )× P

λ(s,(p,p′)). ((s,p),p′)

��

1

upd
��
P

λ(∗,p). p
��

S × (P × P )

S×λp. (p,p)
��

1× P S × P
lkp×P

oo

7 P.-A. Melliès. String diagrams in logic and computer science. Slides from lecture 6 from course held at
ITU Copenhagen, Apr. 2011. G. Plotkin. Algebraic effects. Slides from Logic and Interaction, Marseille,
Feb. 2012.
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