Introduction to Linear Logic

Andres Ojamaa

23.02.2006
Outline

Introduction
 Classical Logic

Linear Logic
 Background
 Syntax
 Informal Semantics
 Common Variants

Some Random Applications
 Synthesis of Web Services
 Theorem Provers
 Quantum Programming
Structural rules of weakening and contraction:

- $\Gamma, \Delta \vdash \Delta$
- $\Gamma, \Delta, A \vdash \Delta$
- $\Gamma, A, A \vdash \Delta$
- $\Gamma, A, A, \Delta \vdash \Delta$

- A fact can be used freely as many times as needed.
- What can be concluded from $A, A \Rightarrow B, A \Rightarrow C$?
Capitalistic Point of View

“A implies B” should be read as “give me as many A as I might need and I get you B”.
Linear Logic

- Proposed by Jean-Yves Girard in 1987
- Denies the structural rules of weakening and contraction
- Assumptions as consumable resources

There are other resource-oriented logics:
- Relevance logic
- Lambek calculus
Classical Linear Logic Sequent Calculus
Multiplicative conjunction

- Operator: \otimes
- Denotes simultaneous occurrence of resources
- Unit: 1 ($1 \otimes A = A = A \otimes 1$)

Multiplicative disjunction

- Operator: \otimes
- Represents simultaneous goals that must be reached
- Unit: ⊥
Linear Connective Soup

Additive conjunction

- Operator: $\&$
- Internal choice, represents alternative occurrence of resources
- Unit: \top

Additive disjunction

- Operator: \oplus
- External choice, represents a choice over which one has no control
- Unit: 0
The proposition $A \rightarrow B$ consumes resource A to reach resource B.

- Reuse is allowed for propositions using “of course” operator: $. (contraction)$
- A fact can be weakened by additional conclusion $?A$ (“why not” operator).
Negation

Atomic formula:
- Negation of A is A^\perp
- Negation of A^\perp is A

Negation of non-atomic formulae is defined using the De Morgan rule:
- $(A \otimes B)^\perp = A^\perp \otimes B^\perp$
- $(A \otimes B)^\perp = A^\perp \otimes B^\perp$
- $(A \& B)^\perp = A^\perp \oplus B^\perp$
- $(A \oplus B)^\perp = A^\perp \& B^\perp$

Linear implication $A \rightarrow B$ is defined as a shorthand for $A^\perp \otimes B$
Entree:
▶ quiche lorraine ou
▶ saumon fume

et Plat:
▶ pot-au-feu ou
▶ filet de canard

et
▶ Fruit selon saison (banane ou raisin ou oranges ou ananas) ou
▶ Dessert au choix (mister, glace, tarte aux pommes)

75FF ⊗ (Q∩S) ⊗ (P∩F) ⊗ ((B ⊕ R ⊕ O ⊕ A) & (M & G & T))
Common Variants of Linear Logic

- **MLL - Multiplicative LL**
 - Only \otimes and \otimes are allowed
 - Decidable, NP-complete (Max I. Kanovich)

- **MALL - Multiplicative Additive LL**
 - Adds additive connectives (\oplus, $\&$) to MLL
 - Decidable, PSPACE-complete (P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar)

- **MELL - Multiplicative Exponential LL**
 - Adds exponential operators to MLL
 - The decision problem is open

- **MAELL - Multiplicative Additive Exponential LL**
 - Undecidable

There are also first- and higher-order extensions of LL.
Synthesis of Web Services

- How to find solutions effectively?
- General description of a service:

\[
\text{resources} \otimes \text{constraints} \otimes \text{preconditions} \otimes \text{inputs} \\
\quad \rightarrow (\text{effects} \otimes \text{outputs}) \oplus \text{exception}
\]

- Example:

\[
\text{have_processing_time} \otimes \text{x_is_known} \otimes \text{y_is_known} \\
\quad \rightarrow \text{z_is_known} \oplus \text{exception}
\]
The extralogical axiom describing a service:

\[a \otimes i \rightarrow (f \otimes o) \oplus e \]

Where:
- \(a \) - multiplicative conjunction of resources, constraints and preconditions
- \(i \) - multiplicative conjunction of inputs
- \(f \) - multiplicative conjunction of effects
- \(o \) - multiplicative conjunction of outputs
- \(e \) - exception
Admissible derivation rule:

\[
\begin{array}{c}
\vdash a \otimes !i \rightarrow f \otimes !o \\
\Gamma \vdash a \\
\Sigma \vdash !i \\
\hline
\Gamma, \Sigma \vdash f \otimes !u
\end{array}
\]

Where \(u \) consists of something from \(i, o \).

What about the complexity of the proof-search?
Theorem Provers: linprove

- Searches a cut-free proof of the given two-sided sequent of first-order linear logic
- Written in SICStus Prolog (≈ 1400 LOC)
- Online demo: http://bach.istc.kobe-u.ac.jp/llprover/
- Author: Naoyuki Tamura

Example proof:

```
-------  Ax
a --> a
----------  L/\1
a/\b --> a
```
Linear Logic Theorem Provers

- linprove - prover for propositional linear logic
 - Written in Scheme (≈ 4000 LOC)
 - Proof Strategies in Linear Logic. 1994
 - Author: Tanel Tammet

- Forum
 - Based on intuitionistic linear logic
 - Designed by Dale Miller

- RAPS - Resource-Aware Planning System
 - LL planner to support reasoning over Web service composition problems in propositional and first-order LL
 - Written in Java
 - Peep Küngas
QML - Quantum Meta Language

QML is a functional language for quantum computations developed by T. Altenkirch and J. Grattage.

- Based on strict linear logic
 - SLL is an extension of LL with structural rule of contraction.
- Quantum control and quantum data
- Important issue: control of decoherence
Summary

- “I’m not a linear logician.” – Girard
- Linear Logic provides useful tools for different applications
- Expressive power vs complexity