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Résumé

Les séquences de jeux sont une méthodologie établie pour structurer les preuves
cryptographiques. De telles preuves peuvent être formalisées rigoureusement en re-
gardant les jeux comme des programmes probabilistes et en utilisant des méthodes
de véri�cation de programmes. Cette thèse décrit CertiCrypt, un outil permettant
la construction et véri�cation automatique de preuves basées sur les jeux. Certi-
Crypt est implementé dans l'assistant à la preuve Coq, et repose sur de nombreux
domaines, en particulier les probabilités, la complexité,l'algèbre, et la sémantique
des langages de programmation. CertiCrypt fournit des outils certi�és pour rai-
sonner sur l'équivalence de programmes probabilistes, en particulier une logique de
Hoare relationnelle, une théorie équationnelle pour l'équivalence observationnelle,
une bibliothèque de transformations de programme, et des techniques propres aux
preuves cryptographiques, permettant de raisonner sur lesévènements. Nous va-
lidons l'outil en formalisant les preuves de sécurité de plusieurs exemples emblé-
matiques, notamment le schéma de chi�rement OAEP et le schéma de signature
FDH.
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Abstract

The game-based approach is a popular methodology for structuring crypto-
graphic proofs as sequences of games. Game-based proofs canbe rigorously formal-
ized by taking a code-centric view of games as probabilisticprograms and relying
on programming language techniques to justify proof steps.In this dissertation
we present CertiCrypt, a framework that enables the machine-checked construc-
tion and veri�cation of game-based cryptographic proofs. CertiCrypt is built upon
the general-purpose proof assistant Coq, from which it inherits the ability to pro-
vide independently veri�able evidence that proofs are correct, and draws on many
areas, including probability and complexity theory, algebra, and semantics of pro-
gramming languages. The framework provides certi�ed toolsto reason about the
equivalence of probabilistic programs, including a relational Hoare logic, a theory of
observational equivalence, veri�ed program transformations, and ad-hoc program-
ming language techniques of particular interest in cryptographic proofs, such as rea-
soning about failure events. We validate our framework through the formalization
of several signi�cant case studies, including proofs of security of the Optimal Asym-
metric Encryption Padding scheme against adaptive chosen-ciphertext attacks, and
of existential unforgeability of Full-Domain Hash signatures.
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This dissertation builds on several published works that I co-authored. In
chronological order,

� Formal certi�cation of ElGamal encryption. A gentle introduct ion to CertiCrypt.
With Gilles Barthe, Benjamin Grégoire and Sylvain Heraud.
In proceedings of the5th International workshop on Formal Aspects in Security
and Trust, FAST 2008, volume 5491 ofLecture Notes in Computer Science,
pages 1�19, Berlin, 2009. Springer-Verlag.

� Formal certi�cation of code-based cryptographic proofs.
With Gilles Barthe and Benjamin Grégoire.
In proceedings of the36th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, POPL 2009, pages 90�101, New York, 2009. ACM
Press.

� Formally certifying the security of digital signature schemes.
With Gilles Barthe, Benjamin Grégoire and Federico Olmedo.
In proceedings of the30th IEEE symposium on Security and Privacy, S&P 2009,
pages 237�250, Los Alamitos, California, 2009. IEEE Computer Society.

� Programming language techniques for cryptographic proofs.
With Gilles Barthe and Benjamin Grégoire.
In proceedings of the1st International conference on Interactive Theorem Prov-
ing, ITP 2010, volume 6172 ofLecture Notes in Computer Science, pages 115�
130, Berlin, 2010. Springer-Verlag.

� A machine-checked formalization of Sigma-protocols.
With Gilles Barthe, Benjamin Grégoire, Sylvain Heraud and Daniel Hedin.
In proceedings of the23rd IEEE Computer Security Foundations symposium,
CSF 2010, pages 246�260, Los Alamitos, California, 2010. IEEE Computer So-
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� Beyond Provable Security. Veri�able IND-CCA Security of OAEP.
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at the RSA Conference 2011.

I contributed in the elaboration of all of them, as well as in the development of the
supporting machine-checked proofs.
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1
Introduction

Designing secure cryptographic systems is a notoriously di�cult task. Indeed,
the history of modern cryptography is fraught with examples of cryptographic

systems that had been thought secure for a long time before being broken and with
�awed security proofs that stood unchallenged for years. Provable security [Gold-
wasser and Micali 1984; Stern 2003] is an approach that aims to establish the
security of cryptographic systems through a rigorous analysis in the form of a
mathematical proof, borrowing techniques from complexity theory. In a typical
provable security argument, security is proved by reduction, showing that any at-
tack against the security of the system would lead to an e�cient way to solve some
computationally hard problem.

Provable security holds the promise of delivering strong guarantees that cryp-
tographic schemes meet their goals and is becoming unavoidable in the design and
evaluation of new schemes. Yet provable securityper se does not provide speci�c
tools for managing the complexity of proofs and as a result several purported se-
curity arguments that followed the approach have been shownto be �awed. Con-
sequently, the cryptography community is increasingly aware of the necessity of
developing methodologies that systematize the type of reasoning that pervade cryp-
tographic proofs, and that guarantee that such reasoning isapplied correctly.

One prominent method for achieving a high degree of con�dence in crypto-
graphic proofs is to cast security as a program veri�cation problem: this is achieved
by formulating goals and hypotheses in terms of probabilistic programs, and de�ning
the adversarial model in terms of complexity classes, e.g. probabilistic polynomial-
time programs. This code-centric view leads to statements that are unambiguous
and amenable to formalization. However, standard methods to verify programs (e.g.
in terms of program logics) are ine�ective to directly address the kind of veri�cation
goals that arise from cryptographic statements. The game-based approach [Bellare
and Rogaway 2006; Halevi 2005; Shoup 2004] is an alternativeto standard pro-
gram veri�cation methods that establishes the veri�cation goal through successive
program transformations. In a nutshell, a game-based proofis structured as a se-
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2 Chapter 1. Introduction

quence of transformations of the formG; A ! h G0; A0, where G and G0 are prob-
abilistic programs, A and A0 are events, andh is a monotonic function such that
Pr [G : A] � h(Pr [G0 : A0]). When the security of a scheme is expressed as an in-
equality of the form Pr [G0 : A0] � p, it can be proved by exhibiting a sequence of
transformations

G0; A0 ! h1 G1; A1 ! � � � ! hn Gn ; An

and proving that h1 � � � � � hn (Pr [Gn : An ]) � p. Reductionist arguments can be
naturally formulated in this manner by exhibiting a sequence of games where
Pr [Gn : An ] encodes the probability of success of some e�cient algorithm in solv-
ing a problem assumed to be hard. Under this code-centric view of games, game
transformations become program transformations and can bejusti�ed rigorously
by semantic means; in particular, many transformations canbe viewed as common
program optimizations.

1.1 The CertiCrypt Framework

Whereas Bellare and Rogaway [2006] already observed that code-based proofs could
be more easily amenable to machine-checking, Halevi [2005]argued that formal ver-
i�cation techniques should be used to improve trust in cryptographic proofs, and set
up a program for building a tool that could be used by the cryptography community
to mechanize their proofs. We take a �rst step towards Halevi's ambitious program
by presenting CertiCrypt [Barthe et al. 2009c], a fully machine-checked framework
for constructing and verifying game-based cryptographic proofs. CertiCrypt builds
on top of the Coq proof assistant [The Coq development team 2009] a broad set of
reasoning principles used by cryptographers, drawing on program veri�cation, alge-
braic reasoning, and probability and complexity theory. The most notable features
of the framework are:

Faithful and rigorous encoding of games. In order to be readily accessible to cryp-
tographers, we adopt a formalism that is commonly used to describe games.
Concretely, the lowest layer of CertiCrypt is an imperative programming lan-
guage with probabilistic assignments, structured datatypes, and procedure calls.
We formalize the syntax and semantics of programs; the latter uses the mea-
sure monad of Audebaud and Paulin-Mohring [2009]. (For the connoisseur, we
provide a deep and dependently-typed embedding of the syntax; thanks to de-
pendent types, the typeability of programs is obtained for free.) The semantics
is instrumented to calculate the cost of running programs; this o�ers the means
to de�ne complexity classes, and in particular to de�ne formally the notion
of e�cient (probabilistic polynomial-time) adversary. We provide in addition a
precise formalization of the adversarial model that captures many assumptions
left informal in proofs, notably including policies on memory access.

Exact security. Many security proofs only show that the advantage of any e�cient
adversary against the security of a cryptographic system isasymptotically neg-
ligible with respect to a security parameter (which typically determines the
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length of keys or messages). However, the cryptography community is increas-
ingly focusing on exact security, a more useful goal since itgives hints as to how
to choose system parameters in practice to satisfy a security requirement. The
goal of exact security is to provide a concrete upper bound for the advantage
of an adversary executing in a given amount of time. This is ingeneral done by
reduction, constructing an algorithm that solves a problembelieved to be hard
and giving a lower bound for its success probability and an upper bound for
its execution time in terms of the advantage and execution time of the origi-
nal adversary. We focus on bounding the success probability(and only provide
automation to bound the execution time asymptotically) since it is arguably
where lies most of the di�culty of a cryptographic proof.

Full and independently veri�able proofs. We adopt a formal semanticist perspec-
tive and go beyond Halevi's vision in two respects. First, weprovide a uni�ed
framework to carry out full proofs; all intermediate steps of reasoning can be
justi�ed formally, including complex side conditions that justify the correctness
of transformations (about probabilities, algebra, complexity, etc.). Second, one
notable feature of Coq, and thus CertiCrypt, is to deliver independently veri�-
able proofs, an important motivation behind the game-basedapproach. More
concretely, every proof yields a proof object that can be checked automati-
cally by a (small and trustworthy) proof checking engine. In order to trust a
cryptographic proof, one only needs to check its statement and not its details.

Powerful and automated reasoning methods. We formalize a relational Hoare logic
and a theory of observational equivalence, and use them as stepping stones
to support the main tools of code-based reasoning. In particular, we prove
that many transformations used in code-based proofs, including common opti-
mizations, are semantics-preserving. In addition, we mechanize reasoning pat-
terns used ubiquitously in cryptographic proofs, such as reasoning about fail-
ure events (the so-called fundamental lemma of game-playing), and a logic for
inter-procedural code-motion (used to justify the eager/lazy sampling of ran-
dom values).

1.2 Organization of the Dissertation

The purpose of this dissertation is to provide a high-level description of the Cer-
tiCrypt framework, overview the case studies that have been formalized, and stir
further interest in machine-checked cryptographic proofs. The rest of the disserta-
tion is organized as follows:

� In the rest of this chapter we brie�y discuss the motivation behind formal proofs
and the features of modern proof assistants. We then presenttwo introductory
examples of game-based proofs, namely the semantic security of the ElGamal
and Hashed ElGamal encryption schemes. These examples, although simple,
nicely illustrate the kind of veri�cation problem that we st udy and the tech-
niques that we use to mechanize the construction of proofs.
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� In Chapter 2 we overview the mathematical background behindour formal-
ization and present the probabilistic language that we use to describe games
and its semantics. We also discuss our model of adversaries and the notions of
complexity and termination of programs in a probabilistic setting;

� In Chapter 3 we present the probabilistic relational Hoare logic that constitutes
the core of the framework, and describe the formulation and mechanization of
game transformations. We describe as well two ubiquitous reasoning patterns of
cryptographic proofs and specializations of the relational Hoare logic that can
be used to automate them;

� In Chapter 4 we give a detailed description of two di�erent formalizations of the
PRP/PRF switching lemma, an important result in cryptograp hy that admits
an elegant proof using games;

� In Chapter 5 we describe two di�erent machine-checked proofs of the existential
unforgeability against chosen-message attacks of the Full-Domain Hash digital
signature scheme. We compare the resulting security boundsand discuss the
practical importance of tight reductions and the role that exact security plays
in choosing adequate parameters when instantiating schemes;

� In Chapter 6 we describe in some detail a machine-checked proof of the semantic
security of the Optimal Asymmetric Encryption Padding scheme against chosen-
plaintext attacks, and we report on a signi�cantly more chal lenging proof of the
security of the same scheme under adaptive chosen-ciphertext attacks;

� In Chapter 7 we overview a machine-checked theory of a large class of zero-
knowledge protocols. We illustrate how to use this theory toobtain short proofs
of several well-known zero-knowledge protocols from the literature;

� We conclude in Chapter 8 with a survey of related work in the area, a discussion
of the lessons we learned while buildingCertiCrypt and perspectives to improve
automation and further this line of research.

1.3 A Primer on Formal Proofs

Proof assistants are programs designed to support interactive construction and
automatic veri�cation of mathematical statements (understood in a broad sense).
Initially developed by logicians to experiment with the expressive power of their
foundational formalisms, proof assistants are now emerging as a mature technology
that can be used e�ectively for verifying intricate mathematical proofs, such as the
Four Color theorem [Gonthier 2008] or the Kepler conjecture[Hales 2008; Hales
et al. 2010], or complex software systems, such as operatingsystems [Klein et al.
2009], virtual machines [Klein and Nipkow 2006] and optimizing compilers [Leroy
2006]. In the realm of cryptography, proof assistants have been used to formally
verify secrecy and authenticity properties of protocols [Paulson 1998].

Proof assistants rely on expressive speci�cation languages that allow formalizing
arbitrary mathematical notions, and that provide a formal r epresentation of proofs
as proof objects. Their architecture is organized into two layers: a kernel, and a
proof engine.



1.4. Introductory Examples 5

� The kernel is the cornerstone for correctness. Its central component is a checker
for verifying the consistency of formal theories, including de�nitions and proofs.
In particular, the checker guarantees that de�nitions and proofs are well-typed,
that there are no missing cases or unde�ned notions in de�nitions, and that all
proofs are built from valid elementary logical steps and make a correct use of
assumptions.

� In contrast, the proof engine assists proof construction. The proof engine em-
braces a variety of tools. The primary tools are a set of pre-de�ned tactics; a
language for writing user-de�ned tactics is usually provided. Tactics allow to
reduce a proof goal to simpler ones. When invoked on a proof goal Q, a tactic
will compute a new set of goalsP1 : : : Pn , and a proof that P1 ^ : : : ^ Pn =) Q.
At the end of each demonstration, the proof engine outputs a proof object.

Proof objects are independently checked by the kernel. Therefore, the proof engine
needs not be trusted, and the validity of a formal proof�beyon d the accuracy
of the statement itself�only depends on the correctness of the kernel. Pleasingly,
kernels are extremely reliable programs with restricted functionalities and solid
logical foundations.

As with any other mathematical activity, formal proofs stri ve for elegance and
conciseness. In our experience, they also provide a naturalsetting for improving
proofs�in the case of cryptography, improvement can be measured by comparing
exact security bounds. Yet, what matters most about a formal proof is that it
provides a nearly absolute degree of guarantee, without requiring expensive human
veri�cation.

1.4 Introductory Examples

This section illustrates the principles of the CertiCrypt framework on two elemen-
tary examples of game-based proofs: the semantic security of ElGamal encryption
under the Decision Di�e-Hellman assumption, and the semantic security of Hashed
ElGamal encryption in the Random Oracle Model under the Computational Di�e-
Hellman assumption. The language used to represent games will be formally in-
troduced in the next chapter; an intuitive understanding should su�ce to grasp
the meaning of the games appearing here. We begin with some background on
encryption schemes and their security.

De�nition 1.1 (Asymmetric encryption scheme). An asymmetric encryption
scheme is composed of a triple of algorithms:

Key generation: Given a security parameter � , the key generation algorithmKG(� )
returns a public/secret key pair (pk; sk);

Encryption : Given a public keypk and a plaintext m, the encryption algorithm
E(pk; m) computes a ciphertext corresponding to the encryption of
m under pk;



6 Chapter 1. Introduction

Decryption: Given a secret keysk and a ciphertext c, the decryption algorithm
D(sk; c) returns either the plaintext corresponding to the decryption
of c, if it is a valid ciphertext, or a distinguished value? otherwise.

Key generation and encryption may be probabilistic, while decryption is determin-
istic. We require that decryption undo encryption: for every pair of keys (pk; sk)
that can be output by the key generation algorithm, and every plaintext m, it must
be the case thatD(sk; E(pk; m)) = m.

An asymmetric encryption scheme is said to be semantically secure if it is un-
feasible to gain signi�cant information about a plaintext g iven only a corresponding
ciphertext and the public key. Goldwasser and Micali [1984]showed that seman-
tic security is equivalent to the property of ciphertext ind istinguishability under
chosen-plaintext attacks (IND-CPA, for short). This property can be formally de-
�ned in terms of a game played between a challenger and an adversary A , repre-
sented as a pair of procedures(A 1; A 2) that may share state:

Game IND-CPA :
(pk; sk)  KG (� );
(m0; m1)  A 1(pk);
b $ f 0; 1g;
c  E (pk; mb);
~b  A 2(c)

In this game, the challenger �rst generates a new key pair andgives the public key
pk to the adversary, who returns two plaintexts m0; m1 of its choice. The challenger
then tosses a fair coinband gives the encryption ofmb back to the adversary, whose
goal is to guess which message has been encrypted.

De�nition 1.2 (IND-CPA security). The advantage of an adversaryA in the
above experiment is de�ned as

Adv IND-CPA
A =

�
�
�
�Pr

h
IND-CPA : b = ~b

i
�

1
2

�
�
�
�

An encryption scheme is said to beIND-CPA secure if the advantage of any e�cient
adversary is a negligible function of the security parameter� , i.e., the adversary
cannot do much better than a blind guess.

De�nition 1.3 (Negligible function). A function � : N ! R is said to be negli-
gible if it decreases asymptotically faster than the inverseof any polynomial:

8c 2 N: 9nc 2 N: 8n 2 N: n � nc =) j � (n)j � n� c

Note that in order to satisfy the above de�nition, an encrypt ion scheme must
necessarily be probabilistic, otherwise an adversary could trivially detect to which
message corresponds the challenge ciphertext by simply encrypting one of the mes-
sages it has chosen and comparing the resulting ciphertext with the challenge ci-
phertext.
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1.4.1 The ElGamal Encryption Scheme

Let f G� g be a family of cyclic prime-order groups indexed by a security parameter
� 2 N. For a speci�c value of the security parameter, which we leave implicit, let q
denote the order of the corresponding group in the family andlet g be a generator.
ElGamal encryption is de�ned by the following triple of algo rithms:

KG(� ) def= x $ Zq; return (gx ; x)
E(�; m ) def= y $ Zq; return (gy ; � y � m)
D(x; (�; � )) def= return (� � � � x )

We prove the IND-CPA security of ElGamal encryption under the assumption that
the Decision Di�e-Hellman ( DDH) problem is hard. Intuitively, for a family of
�nite cyclic groups, the DDH problem consists in distinguishing between triples
of the form (gx ; gy ; gxy ) and triples of the form (gx ; gy ; gz ) , where the exponents
x; y; z are uniformly sampled fromZq. One characteristic of game-based proofs is to
formulate computational assumptions using games; the assumption that the DDH
problem is hard is no exception and can be formulated as follows:

De�nition 1.4 (Decision Di�e-Hellman assumption). Consider the follow-
ing games

Game DDH0 : x; y $ Zq; d  B (gx ; gy ; gxy )
Game DDH1 : x; y; z $ Zq; d  B (gx ; gy ; gz )

and de�ne the DDH-advantage of an adversaryB as follows

Adv DDH
B

def
= jPr [DDH0 : d = 1] � Pr [DDH1 : d = 1] j

We say that theDDH assumption holds for the family of groupsf G� g when the ad-
vantage of any e�cient adversary B in the above experiment is a negligible function
of the security parameter. Note that the semantics of the games(and in particular
the order q of the group) depends on the security parameter� .

ElGamal is an emblematic example of game-based proofs. The proof of its se-
curity, which follows the proof by Shoup [2004], embodies many of the techniques
described in the next chapters. The proof is done by reduction and shows that every
adversaryA against the chosen-plaintext security of ElGamal that achieves a given
advantage can be used to construct a distinguisherB that solves DDH with the
same advantage and in roughly the same amount of time. We exhibit a concrete
construction of this distinguisher:

Adversary B(�; �;  ) :
(m0; m1)  A 1(� );
b $ f 0; 1g;
~b  A 2(�;  � mb);
return b = ~b

We prove that Adv DDH
B = Adv IND-CPA

A for any given adversaryA . To conclude the
proof (i.e. to show that the advantage of any e�cient adversary A is negligible),



8 Chapter 1. Introduction

we show that the reduction is e�cient: the adversary B executes in probabilistic
polynomial-time provided the IND-CPA adversary A does�we do not show a con-
crete bound for the execution time ofB, although it is evident that it incurs only
a constant overhead.

Figure 1.1 gives a high-level view of the reduction: games appear inside white
background boxes, whereas gray background boxes contain the actual proof scripts
used to prove observational equivalence between consecutive games. A proof script
is simply a sequence of tactics, each intermediate tactic transforms the current goal
into a simpler one, whereas the last tactic in the script ultimately solves the goal.
The tactics that appear in the �gure hopefully have self-explanatory names, but
are explained cursorily below and in more detail in Chapter 3.

The proof proceeds by constructing an adversaryB against DDH such that the
distribution of b = ~b (equivalently, d) after running the IND-CPA game for ElGamal
is exactly the same as the distribution obtained by running gameDDH0. In addition,
we show that the probability of d being true in DDH1 is exactly 1=2 for the same
adversary B. The remaining gap betweenDDH0 and DDH1 is the DDH-advantage
of B. The reduction is summarized by the following equations:

�
�
�Pr

h
IND-CPA : b = ~b

i
� 1=2

�
�
� = jPr [G1 : d] � 1=2j (1.1)

= jPr [DDH0 : d] � 1=2j (1.2)

= jPr [DDH0 : d] � Pr [G3 : d]j (1.3)

= jPr [DDH0 : d] � Pr [G2 : d]j (1.4)

= jPr [DDH0 : d] � Pr [DDH1 : d]j (1.5)

Equation (1.1) holds because gamesIND-CPA and G1 induce the same distribution
on d. We specify this as an observational equivalence judgment as IND-CPA ' f dg G1,
and prove it using certi�ed program transformations and decision procedures. A
graphical representation of the sequence of tactics used toprove this judgment is
shown in Figure 1.2. We �rst inline the procedure calls to KG and E in the IND-CPA
game and simplify the resulting games by propagating assignments and eliminating
dead code (tacticsep, deadcode). At this point we are left with two games almost
identical, except that y is sampled later in one game than in the other. The tactic
swap hoists instructions in one game whenever is possible in order to obtain a
maximal common pre�x with another game, and allows us to hoist the sampling
of y in the program on the left hand side. We conclude the proof by applying the
tactic eqobs_in that decides observational equivalence of a program with itself.

Equations (1.2) and (1.5) are obtained similarly, while (1.3) is established by
simple probabilistic reasoning: because in gameG3 the bit ~b is independent fromb,
the probability of both bits being equal is exactly 1=2. Finally, to prove (1.4) we
begin by removing the part the two games have in common with the exception of
the instruction z $ Zq (swap, eqobs_hd, eqobs_tl ) and then apply an algebraic
property of cyclic groups that we have proved as a lemma (otp ): if one applies the
group operation to a uniformly distributed element of the group and some other
constant element, the result is uniformly distributed�a ran dom element acts as a
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(1.1)

(1.2)

(1.4)

(1.5)

' f dg

' f dg ' f dg

' f dg

inline KG
inline E
ep
deadcode
swap
eqobs_in

inline B
ep
deadcode
eqobs_in

inline B
ep
deadcode
swap
eqobs_in

swap
eqobs_hd 4
eqobs_tl 2
apply otp

Game IND-CPA :
(�; x )  KG (� );
(m0 ; m1)  A 1(� );
b $ f 0; 1g;
(�; � )  E (�; m b);
~b  A 2(�; � );
d  b = ~b

Game G1 :
x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
�  gxy � mb;
~b  A 2(gy ; � );
d  b = ~b

Game DDH0 :
x; y $ Zq ;
d  B (gx ; gy ; gxy )

Adversary B(�; �;  )
(m0 ; m1)  A 1(� );
b $ f 0; 1g;
b0  A 2(�;  � mb);
return b = b0

Game DDH1 :
x; y; z $ Zq ;
d  B (gx ; gy ; gz )

Game G2 :
x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g; z $ Zq ;
�  gz � mb;
~b  A 2(gy ; � );
d  b = ~b

Game G3 :
x; y $ Zq ;
(m0 ; m1)  A 1(gx );
z $ Zq ; �  gz ;
~b  A 2(gy ; � );
b $ f 0; 1g;
d  b = ~b

Fig. 1.1. Code-based proof of ElGamal semantic security.

one-time pad. This allows to prove that z $ Zq; �  gz � mb and z $ Zq; �  gz

induce the same distribution on � , and thus remove the dependence of~b on b.
The proof concludes by applying theDDH assumption to show that the IND-CPA

advantage ofA is negligible. For this, and in view that Adv IND-CPA
A = Adv DDH

B , it
su�ces to prove that the adversary B is probabilistic polynomial-time (under the
assumption that the proceduresA 1 and A 2 are so); the proof of this latter fact is
entirely automated in CertiCrypt.

1.4.2 The Hashed ElGamal Encryption Scheme

Hashed ElGamal is a variant of the ElGamal public-key encryption scheme that does
not require plaintexts to be members of the underlying groupG. Instead, plaintexts
in Hashed ElGamal are just bitstrings of a certain length ` and group elements are
mapped into bitstrings using a hash functionH : G ! f 0; 1g` . Formally, the scheme
is de�ned by the following triple of algorithms:

KG(� ) def= x $ Zq; return (gx ; x)
E(�; m ) def= y $ Zq; h  H (� y ); return (gy ; h � m)
D(x; (�; � )) def= h  H (� x ); return (� � h)

Hashed ElGamal encryption is semantically secure in the random oracle model un-
der the Computational Di�e-Hellman ( CDH) assumption on the underlying group
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(�; x )  KG (� );
(m0 ; m1)  A 1(� );
b $ f 0; 1g;
(�; � )  E (�; m b);
~b  A 2(�; � );
d  b = ~b

x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
�  gxy � mb;
~b  A 2(gy ; � );
d  b = ~b

' f dg

inline KG; inline E
x $ Zq ; �  gx ;
(m0 ; m1)  A 1(� );
b $ f 0; 1g;
y $ Zq ; �  gy ;
�  � y � mb;
~b  A 2(�; � );
d  b = ~b

x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
�  gxy � mb;
~b  A 2(gy ; � );
d  b = ~b

' f dg

ep; deadcode
x $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
y $ Zq ;
~b  A 2(gy ;gxy � mb);
d  b = ~b

x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
~b  A 2(gy ;gxy � mb);
d  b = ~b

' f dg

swap

x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
~b  A 2(gy ;gxy � mb);
d  b = ~b

x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
~b  A 2(gy ;gxy � mb);
d  b = ~b

' f dg

eqobs_in

Fig. 1.2. Sequence of transformations in the proof of IND-CPA ' f dg G1.

family f G� g. This is the assumption that it is hard to compute gxy given only gx

and gy wherex and y are uniformly sampled fromZq. Clearly, the DDH assumption
implies the CDH assumption, but the converse need not necessarily hold.1

De�nition 1.5 (Computational Di�e-Hellman assumption). Consider the
following game

Game CDH : x; y $ Zq;   B (gx ; gy )

and de�ne the success probability ofB against CDH as follows

Adv CDH
B

def
= Pr [CDH :  = gxy ]

We say that the CDH assumption holds for the family of groupsf G� g when the
success probability of any probabilistic polynomial-timeadversary B is a negligible
function of the security parameter.

1 Groups where DDH is easy andCDH is believed to be hard are of practical importance
in cryptography and are called Di�e-Hellman gap groups [Okamoto and Pointcheval
2001a].
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We show that any adversaryA against the IND-CPA security of Hashed ElGamal
that makes at most qH queries to the hash oracleH can be used to construct
an adversary B that achieves a success probability ofq� 1

H Adv IND-CPA
A in solving

the CDH problem. The reduction is done in the random oracle model, where hash
functions are modeled as truly random functions. We represent random oracles using
stateful procedures; queries are answered consistently: if some value is queried twice,
the same response is given. For instance, we code the hash function H as follows:

Oracle H (� ) :
if � =2 dom(L ) then
h $ f 0; 1g` ;
L  (�; h ) :: L

elseh  L [� ]
return h

The proof is sketched in Figure 1.3. We follow the conventionof typesetting global
variables in boldface. The �gure shows the sequence of gamesused to relate the
success of theIND-CPA adversary in the original attack game to the success of the
CDH adversary B; the de�nition of the hash oracle is shown alongside each game.
As in the proof of the semantic security of ElGamal, we begin by inlining the calls
to KG and E in the IND-CPA game to obtain an observationally equivalent game
G1 such that

Pr
h
IND-CPA : b = ~b

i
= Pr

h
G1 : b = ~b

i
(1.6)

We then �x the value ĥ that the hash oracle gives in response togxy . This is an
instance of the lazy sampling transformation: any value that is randomly sampled
at some point in a program can be sampled in advance, somewhere earlier in the
program. This transformation is automated in CertiCryptand is described in greater
detail in Section 3.2.3. We get

Pr
h
G1 : b = ~b

i
= Pr

h
G2 : b = ~b

i
(1.7)

We can then modify the hash oracle so that it does not store inL the response
given to a gxy query; this will later let us remove ĥ altogether from the code of
the hash oracle. We prove that gamesG2 and G3 are equivalent by considering the
following relational invariant:

� 23
def= (� 2 dom(L ) =) L [� ] = ĥ )h1i ^ 8 �:� 6= � h1i =) L [� ]h1i = L [� ]h2i

whereeh1i (resp.eh2i ) denotes the value that expressione takes in the left hand side
(resp. right hand side) program. Intuitively, this invaria nt shows that the association
list L , which represents the memory of the hash oracle, coincides in both programs,
except perhaps on the element� , which the list in the program on the left hand side
(G2) necessarily maps tôh. It is easy to prove that the implementations of oracleH
in gamesG2 and G3 are semantically equivalent under this invariant and preserve
it. Since � 23 is established just before callingA and is preserved throughout the
games, we can prove by inlining the call toH in game G2 that
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Game IND-CPA :
L  nil;
(�; x )  KG (� );
(m0 ; m1)  A 1(� );
b $ f 0; 1g;
(�; v )  E (�; m b);
~b  A 2(�; v )

Oracle H (� ) :
if � 62dom(L ) then

h $ f 0; 1g` ;
L  (�; h ) :: L

elseh  L [� ]
return h

' f b;~bg

Game G1 :
L  nil;
x; y $ Zq ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
h  H (gxy );
v  h � mb;
~b  A 2(gy ; v)

Oracle H (� ) :
if � 62dom(L ) then

h $ f 0; 1g` ;
L  (�; h ) :: L

elseh  L [� ]
return h

' f b;~bg

Game G2 :
ĥ $ f 0; 1g` ;
L  nil;
x; y $ Zq ;
�  gxy ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
h  H (� );
v  h � mb;
~b  A 2(gy ; v)

Oracle H (� ) :
if � 62dom(L ) then

if � = � then
h  ĥ

elseh $ f 0; 1g`

L  (�; h ) :: L
elseh  L [� ]
return h

� f b;~bg^ � 23

Game G3 :
ĥ $ f 0; 1g` ;
L  nil;
x; y $ Zq ;
�  gxy ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
h  ĥ ;
v  h � mb;
~b  A 2(gy ; v)

Oracle H (� ) :
if � = � then

h  ĥ
else

if � 62dom(L ) then
h $ f 0; 1g`

L  (�; h ) :: L
elseh  L [� ]

return h

Game G4 G5 :
bad  false;
ĥ $ f 0; 1g` ;
L  nil;
x; y $ Zq ;
�  gxy ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
v  ĥ � mb;
~b  A 2(gy ; v)

Oracle H (� ) :
if � 62dom(L ) then

if � = � then
bad  true;
h  ĥ
h $ f 0; 1g`

elseh $ f 0; 1g`

L  (�; h ) :: L
elseh  L [� ]
return h

� f L ; � ;b; ~bg^ ( bad = ) � 2 dom( L )) h1i

Game G6 :
L  nil;
x; y $ Zq ;
�  gxy ;
(m0 ; m1)  A 1(gx );
b $ f 0; 1g;
v $ f 0; 1g` ;
ĥ  v � mb;
~b  A 2(gy ; v)

Oracle H (� ) :
if � 62dom(L ) then

h $ f 0; 1g` ;
L  (�; h ) :: L

elseh  L [� ]
return h

' f L ;x;y g

Game CDH :
x; y $ Zq ;
  B (gx ; gy )

Adversary B(�; � )
L  nil;
(m0 ; m1)  A 1(� );
v $ f 0; 1g` ;
~b  A 2(�; v );
 $ dom(L );
return 

Oracle H (� ) :
if � 62dom(L ) then

h $ f 0; 1g` ;
L  (�; h ) :: L

elseh  L [� ]
return h

Fig. 1.3. Game-based proof of semantic security of Hashed ElGamal encryption in the
Random Oracle Model.
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Pr
h
G2 : b = ~b

i
= Pr

h
G3 : b = ~b

i
(1.8)

We then undo the previous modi�cation to revert to the previous implementation
of the hash oracle and prove that gamesG3 and G4 are observationally equivalent,
from which we obtain

Pr
h
G3 : b = ~b

i
= Pr

h
G4 : b = ~b

i
(1.9)

Let us now introduce a Boolean �ag bad that is set at program points where the
code of G4 and G5 di�er. We argue that the di�erence in the probability of any
event in those games is bounded by the probability ofbad being set in G5, and
therefore �

�
�Pr

h
G4 : b = ~b

i
� Pr

h
G5 : b = ~b

i �
�
� � Pr [G5 : bad ] (1.10)

This form of reasoning is pervasive in game-based cryptographic proofs and is an in-
stance of the so-called Fundamental Lemma that we discuss indetail in Section 3.3.
In addition, we establish that bad =) � 2 dom(L ) is a post-condition of game
G5 and thus

Pr [G5 : bad ] � Pr [G5 : � 2 dom(L )] (1.11)

Since now both branches in the innermost conditional of the hash oracle are equiv-
alent, we coalesce them to recover the original random oracle implementation of H
in G6. We can now use theswaptactic to defer the sampling of ĥ to the point just
before computing v, and substitute

v $ f 0; 1g` ; ĥ  v � mb for ĥ $ f 0; 1g` ; v  ĥ � mb

The semantic equivalence of these two program fragments canbe proved using the
probabilistic relational Hoare logic presented in Section3.1�a proof is given in
Section 3.2.2. Hence,

Pr
h
G5 : b = ~b

i
= Pr

h
G6 : b = ~b

i
(1.12)

and
Pr [G5 : � 2 dom(L )] = Pr [ G6 : � 2 dom(L )] (1.13)

Observe that ~b does not depend anymore onb in G6 (ĥ  v � mb is dead code), so

Pr
h
G6 : b = ~b

i
=

1
2

(1.14)

We �nally construct an adversary B against CDH that interacts with the adversary
A playing the role of an IND-CPA challenger. It returns a random element sampled
from the list of queries that adversary A made to the hash oracle. Observe that
B does not need to knowx or y because it getsgx and gy as parameters. If the
correct answer� = gxy to the CDH challenge appears in the list of queriesL when
the experiment terminates, adversaryB has probability jL j � 1 of returning it as an
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answer. Since we know thatA does not make more thanqH queries to the hash
oracle, we �nally have that

Pr [G6 : � 2 dom(L )] = Pr [ G6 : gxy 2 dom(L )] � qH Pr [CDH :  = gxy ] (1.15)

To summarize, from (1.6)�(1.15) we obtain
�
�
�Pr

h
IND-CPA : b = ~b

i
� 1=2

�
�
� =

�
�
�Pr

h
G4 : b = ~b

i
� 1=2

�
�
�

=
�
�
�Pr

h
G4 : b = ~b

i
� Pr

h
G6 : b = ~b

i �
�
�

=
�
�
�Pr

h
G4 : b = ~b

i
� Pr

h
G5 : b = ~b

i �
�
�

� Pr [G5 : bad ]

� Pr [G6 : � 2 dom(L )]

� qH Pr [CDH :  = gxy ]

For any adversary A that executes in polynomial time, we can assume that the
bound qH on the number of queries is polynomial on the security parameter. Un-
der the CDH assumption, the IND-CPA advantage of adversaryA must then be
negligible. Otherwise, the adversaryB that we constructed would solveCDH with
non-negligible probability, contradicting our computati onal assumption. To see this,
we need to verify that adversaryB runs in probabilistic polynomial time, but this
is the case because proceduresA 1; A 2 do, and B does not perform any additional
costly computations. As in the previous example, the proof of this latter fact is
completely automated in CertiCrypt.

We note that Hashed ElGamal can also be proved semantically secure in the
standard model, but under the stronger DDH assumption. A game-based proof
appears in [Barthe et al. 2009a]. The security reduction canbe made under the
hypothesis that the family of hash functions H is entropy smoothing�such a family
of hash functions can be built without additional assumptions using the Leftover
Hash Lemma [Håstad et al. 1999].



2
A Language for Describing Games

We have tried so far to be as rigorous as possible in our treatment of crypto-
graphic proofs. We argued that a game-based approach can lead to tidier,

more understandable proofs that help eliminate conspicuous errors and make clear
the reasoning behind each step in a proof. We moved one step forward, taking a
language-based approach and regarding games as programs. But still, our under-
standing of what a game means remains purely intuitive. In this chapter we will
make this intuition precise by de�ning formally the probabi listic language we use
to describe games and its semantics. This semanticist perspective allows a precise
speci�cation of the interaction between an adversary and the challenger in a game,
and to readily answer questions that often arise in proofs, such as: Which oracles
does the adversary have access to? Can the adversary read/write this variable? How
many queries the adversary can make to a given oracle? What isthe type/length
of a value returned by the adversary? Can the adversary repeat a query? Fur-
thermore, the framework enables us to give very precise de�nitions of fundamental
notions such as probabilistic polynomial-time complexity or termination which are
of paramount importance in the speci�cation of security de� nitions and computa-
tional hardness assumptions.

2.1 Mathematical Preliminaries

2.1.1 The Unit Interval

The starting point of our formalization is the ALEA Coq library, developed by
Paulin-Mohring and described in [Audebaud and Paulin-Mohring 2009]. It provides
an axiomatization of the unit interval [0; 1], with the following operations:

Addition : (x; y) 7! min(x + y; 1), where + denotes addition over reals;
Inversion: x 7! 1 � x, where � denotes subtraction over reals;
Multiplication : (x; y) 7! x � y, where � denotes multiplication over reals;

15
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Division : (x; y 6= 0) 7! min(x=y; 1), where= denotes division over reals; more-
over, if y = 0 , for convenience division is de�ned to be 0.

Other useful operations can be derived from these basic operations; for instance
the absolute value of the di�erence of two valuesx; y 2 [0; 1] can be obtained by
computing (x � y) + ( y � x) and their maximum by computing (x � y) + y.

The unit interval can be given an ! -complete partial order (cpo) structure.
Recall that an ! -cpo consists of a partially ordered set such that any monotonic
sequence has a least upper bound. The unit interval[0; 1] can be given the structure
of a ! -cpo by taking as order the usual� relation and by de�ning an operator sup
that computes the least upper bound of a monotonic sequencef : N ! [0; 1] as
follows:

sup f = max
n 2 N

f (n)

More generally, for any complete partially ordered setD , we usesupf to denote the
least upper bound of a monotonic sequencef : N ! D . Note that a cpo structure
on D induces a cpo structure in the function spaceA ! D by taking

f � A ! D g def
= 8x : A: f (x) � D g(x)

0A ! D
def= �x: 0D

supA ! D f def= �x: supD (f (x))

2.1.2 The Measure Monad

Programs are interpreted as functions from initial memories to sub-probability dis-
tributions over �nal memories. To give semantics to most programs used in crypto-
graphic proofs, it would be su�cient to consider sub-distri butions with a countable
support, which admit a very direct formalization as functions of the form

� : A ! [0; 1] such that
X

x 2 A

� (x) � 1

However, it is convenient to take a more general approach andrepresent instead a
distribution over a set A as a probability measure, by giving a function that maps
a [0; 1]-valued random variable (a function in A ! [0; 1]) to its expected value,
i.e. the integral of the random variable with respect to the probability measure.
This view of distributions eliminates the need of cluttered de�nitions and proofs
involving summations, and allows us to give a continuation-passing style semantics
to programs by de�ning a suitable monadic structure on distributions. Formally,
we represent a distribution on A as a function � of type

D(A) def= (A ! [0; 1]) ! [0; 1]

satisfying the following properties:

Monotonicity : f � g =) � f � � g ;
Compatibility with inverse: � (1 � f ) � 1 � � f ;
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Additive linearity : f � 1 � g =) � (f + g) = � f + � g ;
Multiplicative linearity : � (k � f ) = k � � f ;
Continuity : if f : N ! (A ! [0; 1]) is monotonic, then � (sup f ) �

sup (� � f )

We do not restrict our attention only to distributions with p robability mass of 1,
but we consider as well sub-probability distributions, that may have a total mass
strictly less than 1. As we will see, this is key to give semantics to non-terminating
programs (i.e. programs that do not terminate with probabil ity 1).

Distributions can be interpreted as a monad whoseunit and bind operators are
de�ned as follows:

unit : A ! D (A) def
= �x: �f: f x

bind : D(A) ! (A ! D (B )) ! D (B ) def= ��: �F: �f: � (�x: (F x) f )

These operators satisfy the usual monadic laws

bind (unit x) F = F x
bind � unit = �
bind (bind � F ) G = bind � (�x: bind (F x) G)

The monad D was proposed by Audebaud and Paulin-Mohring [2009] as a variant
of the expectation monad used by Ramsey and Pfe�er [2002], and builds on earlier
work by Kozen [1981]. It is, in turn, a specialization of the continuation monad
(A ! B ) ! B , with result type B = [0 ; 1].

2.1.3 Lifting Predicates and Relations to Distributions

For a distribution � : D(A) over a countable setA, we let support(� ) denote the set
of values in A with positive probability, i.e. its support:

support(� ) def=
�

x 2 A j 0 < � I f x g
	

where IX denotes the indicator function of setX ,

IX
def
=

�
1 if x 2 X
0 otherwise

To lift relations to probability distributions we follow th e early work of Jonsson
et al. [2001] on probabilistic bisimulations.

De�nition 2.1 (Lifting predicates to distributions). Let � be a distribution
on a setA, and P be a predicate onA. We de�ne the lifting of P to � as follows:

rangeP � def
= 8f: (8x: P x =) f x = 0) = ) � f = 0
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This rather contrived de�nition is necessary because we consider sub-probability
distributions whose total measure may be less than 1; equivalently we could have
stated it as:

rangeP � def= 8f: (8x: P x =) f x = 1) = ) � f = � 1

Note also that due to the way distributions are formalized, the above de�nition is
strictly stronger than the following, more intuitive de�ni tion:

rangeP � def= 8x 2 support(� ): 0 < � (I f x g) =) P x

This latter de�nition makes sense only for distributions wi th countable support, for
which it can be proved equivalent to the above de�nitions.

De�nition 2.2 (Lifting relations to distributions). Let � 1 be a probability dis-
tribution on a set A and � 2 a probability distribution on a set B . We de�ne the lifting
of a relation R � A � B to � 1 and � 2 as follows:

� 1 R# � 2
def= 9� : D(A � B ): � 1(� ) = � 1 ^ � 2(� ) = � 2 ^ rangeR � (2.1)

where rangeR � stands for the lifting of R, seen as a predicate on pairs inA � B ,
to distribution � , and the projections � 1(� ), � 2(� ) of � are given by

� 1(� ) def= bind � (unit � fst) � 2(� ) def= bind � (unit � snd)

In contrast to the de�nition given by Jonsson et al. [2001], the de�nition above
makes sense even when the distributions do not have a countable support. When
they do, both de�nitions coincide; in this case, � 1 R# � 2 amounts to saying that
the probability of each element a in the support of � 1 can be divided among the
elements related to it in such a way that when summing up over these probabilities
for an elementb 2 B , one obtains� 2 I f bg.

Let us give an example that conveys a better intuition; suppose one wants to
prove UA R# UB , where UX stands for the uniform probability distribution on a
�nite set X . When A and B have the same size, proving this is equivalent to
exhibiting a bijection f : A ! B such that for every a 2 A, R(a; f (a)) holds.
Indeed, using suchf it is easy to build a distribution � on A � B that satis�es the
condition in (2.1):

� def= bind UA (�a: unit (a; f (a)))

This example, as trivial as it may seem, shows that probabilistic reasoning can some-
times be replaced by simpler forms of reasoning. In typical cryptographic proofs,
purely probabilistic reasoning is seldom necessary and most mundanesteps in proofs
can be either entirely automated or reduced to verifying simpler conditions, much
like in the above example, e.g. showing the existence of a bijection with particular
properties.

The way we chose to lift relations over memories to relationsover distributions is
a generalization to arbitrary relations of the de�nition of Sabelfeld and Sands [2001]
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that applies only to equivalence relations. Indeed, there is a simpler but equivalent
(see [Jonsson et al. 2001]) way of lifting an equivalence relation to distributions:
if R is an equivalence relation onA, then � 1 R# � 2 holds if and only if for all
equivalence classes[a] � A, � 1 I [a] = � 2 I [a].

De�ne two functions f and g to be equal modulo a relation� i�

f = � g def= 8x y: x � y =) f (x) = g(y)

It can be easily shown that the above general de�nition of lifting satis�es

� 1 � # � 2 ^ f = � g =) � 1 f = � 2 g

and analogously.
� 1 � # � 2 ^ f � � g =) � 1 f � � 2 g

We use these properties to prove rules relating observational equivalence to proba-
bility in Section 3.1.

It can be shown that lifting preserves the re�exivity and symmetry of the lifted
relation, but proving that it preserves transitivity is not as straightforward. Ideally,
one would like to have for probability measures� 1 : D(A), � 2 : D(B ), � 3 : D(C)
and relations 	 � A � B , � � B � C

� 1 	 # � 2 ^ � 2 � # � 3 =) � 1 (	 � � )# � 3

Proving this for arbitrary distributions requires proving Fubini's theorem for prob-
ability measures, which allows to compute integrals with respect to a product mea-
sure in terms of iterated integrals with respect to the original measures. Since in
practice we consider distributions with a countable support, we do not need the full
generality of this result, and we prove it under the assumption that the distribution
� 2 has a countable support, i.e. there exist coe�cients ci : [0; 1] and points bi : B
such that, for any f ,

� 2 f =
1X

i =0

ci f (bi )

Lemma 2.3. Consider d1 : D(A), d2 : D(B ), d3 : D(C) such that d2 has countable
support. Suppose there exist distributions� 12 : D(A � B ) and � 23 : D(B � C) that
make � 1 	 # � 2 and � 2 � # � 3 hold. Then, the following distribution over A � C is
a witness for the existential in � 1 (	 � � )# � 3:

� 13 f def
= � 2

�
�b: � 12

�
�p:

�
1snd(p)= b=� 2 I f bg

�

� 23
�
�q:

�
1fst(q)= b=� 2 I f bg

�
f (fst p;snd q)

���

Proof. The di�cult part of the proof is to show that the projections o f this distri-
bution coincide with � 1 and � 2. For this, we use the fact that � 2 is discrete to prove
that iterative integration with respect to � 2 and another measurecommutes. This
is the case because we can write integration with respect to� 2 as a summation and
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we only consider measures that are continue and linear. For instance, to see that
the �rst projection of � 13 coincides with � 1:

� 1(� 13) f =
1X

i =0

ci � 12
�
�p:

�
1snd(p)= bi =ci

�
� 23

�
�q:

�
1fst(q)= bi =ci

�
f (fst p)

��

= � 12

 

�p:
1X

i =0

1snd(p)= bi � 23
�
�q:

�
1fst(q)= bi =ci

�
f (fst p)

�
!

= � 12

 

�p: f (fst p)
1X

i =0

1snd(p)= bi

!

= � 12 (�p: f (fst p))

= � 1 f

ut

2.2 The pWhile Language

We describe games as programs in thepWhile language, a probabilistic extension
of an imperative language with procedure calls. This language can be regarded as
a mild generalization of the language proposed by Bellare and Rogaway [2006], in
that our language allowswhile loops whereas theirs only allow boundedfor loops.
The formalization of pWhile is carefully crafted to exploit key features of Coq:
it uses modules to support an extensible expression language that can be adapted
according to the veri�cation goal, dependent types to ensure that programs are well-
typed and have a total semantics, and monads to give semantics to probabilistic
programs and capture the cost of executing them.

We formalize programs in a deep-embedding style, i.e. the syntax of the lan-
guage is encoded within the proof assistant. Deep embeddings o�er one tremen-
dous advantage over shallow embeddings, in which the language used to represent
programs is the same as the underlying language of the proof assistant. Namely,
a deep embedding allows to manipulate programs as syntacticobjects. This per-
mits to achieve a high level of automation in reasoning aboutprograms through
certi�ed tactics that implement syntactic program transfo rmations. Additionally, a
deep embedding allows to formalize complexity issues neatly and to reason about
programs by induction on the structure of their code.

The semantics of programs is given by an interpretation function that takes a
program p�an element of the type of programs�and an initial state s, and returns
the result of executing p starting from s. In a deterministic case, both s and the
result of executing p starting from s would be deterministic states, i.e. memories
mapping variables to values. In the case ofpWhile programs, the denotation of
a program is instead a function mapping an initial state to a (sub)-probability
measure over �nal states. We use the measure monad describedin 2.1 to de�ne the
denotation of programs.
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2.2.1 Syntax

Given a set V of variable identi�ers, a set P of procedure identi�ers, a set E of
deterministic expressions, and a setDE of distribution expressions, the instructions
I and commandsC of the language can be de�ned inductively by the clauses:

I ::= V  E deterministic assignment
j V $ DE probabilistic assignment
j if E then C elseC conditional
j while E do C while loop
j V  P (E; : : : ; E) procedure call

C ::= skip nop
j I ; C sequence

The inductive de�nition of the language su�ces to understan d the rest of the pre-
sentation and the reader may prefer to retain it for further reference. In practice,
however, variable and procedure identi�ers are annotated with their types, and the
syntax of programs is dependently-typed. Thus,x  e is well-formed only if the
types of x and e coincide, andif e then c1 elsec2 is well-formed only if e is a Boolean
expression andc1 and c2 are themselves well-formed. An immediate bene�t of using
dependent types is that the type system ofCoq ensures for free the well-typedness
of expressions and commands.

In the remainder of this section we describe in detail the formalization of the
syntax and semantics of the language. Most readers, particularly those not familiar
with Coq, can skim through this section without hindering the understanding of
the rest of the dissertation.

Background on the Coq proof assistant

We built our framework on top of Coq, a general purpose proof assistant that has
been used for over two decades to formalize results in mathematics and computer
science [The Coq development team 2009].Coq provides an expressive speci�ca-
tion language based on the Calculus of Inductive Constructions, a higher-order
dependently-typed � -calculus in which mathematical notions can be formalized
conveniently. The Coq logic distinguishes between types, of typeType, which rep-
resent sets, and propositions, of typeProp, which represent formulae: thus,a : A is
interpreted as �a is an element of typeA� if A is a set, and as �a is a proof of A� if
A is a proposition. In the latter case, we say thata is a proof object. Types can ei-
ther be introduced by standard constructions, e.g. (generalized) function space and
products, or by inductive de�nitions. Most common inductiv e types are prede�ned,
including the type N of natural numbers, the type B of Boolean values, and sum
and product types. We will also use the inductively de�ned types of homogeneous
and heterogeneous lists. Homogeneous lists are composed ofelements of the same
type. The polymorphic inductive type of homogeneous lists is de�ned as follows:
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Inductive list A : Type :=
j nil : nil
j cons: A ! list A ! list A

The list constructor consis usually represented using an in�x notation as the oper-
ator � ::�. Thus, the list composed of the natural numbers 1, 2 and 3, inthat order,
has type list N and could be represented as(1 :: 2 :: 3 :: nil). Heterogeneous lists
are composed of elements whose type may depend on a value. Given a type A and
a type-valued function P : A ! Type, the inductive type of heterogeneous lists is
de�ned as follows:

Inductive hlist A (P : A ! Type) : list A ! Type :=
j dnil : hlist nil
j dcons: 8a l; P a ! hlist l ! hlist (a :: l )

We will use A? to denote the type of A-lists (i.e. list A), and P?
l to denote the type

of heterogeneousP-lists over a list of valuesl (i.e. hlist P l).

Types

We formalize a dependently-typed syntax, and use the underlying type system of
Coq to ensure for free that expressions and commands are well-formed. In our
experience, the typed syntax provides particularly usefulfeedback when debugging
proofs and makes proofs easier by restricting reasoning about programs to reasoning
about their meaningful behaviors.

The types and expressions of the language are de�ned on top ofa module that
contains the declaration of user-de�ned types and operators. Formally, the set T of
types is de�ned as:

Inductive T : Type :=
j User : Tuser ! T
j Nat : T
j Bool : T
j List : T ! T
j Pair : T ! T ! T
j Sum : T ! T ! T
j Option : T ! T

where Tuser denotes the set of user-de�ned types. This set can be given di�erent
de�nitions according to the cryptographic system under veri�cation.

The interpretation of types�and of programs in general�depen ds on a security
parameter � (a natural number),
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De�nition interp (� : N) ( t : T ) :=
match t with
j Userut ) interpuser � ut
j Nat ) N
j Bool ) B
j List t ) list (interp � t )
j Pair t1 t2 ) (interp � t 1) � (interp � t 2)
j Sum t1 t2 ) (interp � t 1) + ( interp � t 2)
end

For instance, to introduce a type of bitstrings of a certain length `(� ) depending
on the security parameter, one would de�neTuser as follows,

Inductive Tuser : Type :=
j Bitstring : Tuser

and let the interpretation of Bistring for a value � of the security parameter be
some representation of the setf 0; 1g` ( � ) in Coq (the type of bitvectors de�ned in
the standard library of Coq provides a convenient representation).

Expressions

Expressions are built from a set ofT -indexed variable namesV, using operators
from the core language, such as constructors for pairs and lists, and user-de�ned
operators. All operators are declared with typing information, as speci�ed by the
functions targs and tres, that return for each operator the list of types of its argu-
ments, and the type of its result, respectively. TheT -indexed family E of expressions
is then de�ned as:

Inductive E : T ! Type :=
j Enat :> N ! E Nat

j Ebool :> B ! E Bool

j Evar :> 8t; Vt ! E t

j Eop : 8op; E?
( targs op) ! E ( tres op)

j Eforall : 8t; Vt ! E Bool ! E (List t ) ! E Bool

j Eexists: 8t; Vt ! E Bool ! E (List t ) ! E Bool

j E�nd : 8t; Vt ! E Bool ! E (List t ) ! E t

The �rst three clauses declare constructors as coercions; thanks to this mechanism
it is possible to view an element of their domain as an elementof their codomain,
e.g. a natural number as an expression of typeNat and a variable of type t as
an expression of typet. The fourth clause corresponds to the standard rule for
operators; the rule requires that the types of the argumentsbe compatible with the
declaration of the operator, as enforced by the typeE?

( targs op) of heterogeneous lists
of expressions. In this clause,op is universally quanti�ed over an inductive type
that contains a �xed set of operators for base types and user-de�ned operators.
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The last three clauses introduce operations on lists that are commonly used in
cryptographic proofs: they take as parameters a variablex of type t, a Boolean
valued expressione that may depend on x, and an expressionl of type List t, and
respectively

(Eforall x e l) checks whether every elementa in l veri�es e when substituting a
for x. We note it as (8x 2 l: e);

(Eexistsx e l) checks whether some elementa in l veri�es e when substituting a
for x. We note it as (9x 2 l: e);

(E�nd x e l) evaluates to the �rst element a in the list l that veri�es e when
substituting a for x, or to a designated default element of typet
if no such element is found. We usually do not write this operator
explicitly, instead we assume that an expression(9x 2 l; e) implicitly
assigns to the variablex the value of (E�nd x e l).

It is worth noting that dependent types allow for rich speci� cations of operators.
For instance, one can de�ne a type for bitstrings of �xed length f 0; 1gk , and a
concatenation operator that keeps track of bitstring lengths with type

8m n; f 0; 1gm ! f 0; 1gn ! f 0; 1gm + n

In addition to the set of deterministic expressions de�ned above, to encode
random assignments we use a set of type-indexed distribution expressionsDE. An
element of DEt denotes some discrete distribution over values of typet. The core
language includes expressions denoting the uniform distribution on natural intervals
of the form [0::n], and on Boolean values. Again, the set of distribution expressions
of the core language can be extended by the user,

Inductive DE : T ! Type :=
j Dnat : ENat ! DE Nat

j Dbool : DEBool

j Duser : 8t; DEuser t ! DE t

Programs

Commands are built from a set of procedure namesP indexed by the type of their
arguments and return value. Formally, the setsI of instructions and Cof commands
are de�ned as follows:

Inductive I : Type :=
j Assign: 8t; Vt ! E t ! I
j Rand : 8t; Vt ! DE t ! I
j Cond : EBool ! C ! C ! I
j While : EBool ! C ! I
j Call : 8l t; P( l;t ) ! V t ! E ?

l ! I
where C := I ?
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For instance, b $ f 0; 1g (a shorthand for Rand b Dbool) is an instruction that
samples a random bit with uniform probability and assigns it to variable b. Note
that the above syntax lacks a construct for sequential composition; instead, we use
lists to represent sequences of instructions.

De�nition 2.4 (Program). A program is a pair consisting of a commandc 2 C
and an environment E : 8l t; P( l;t ) ! decl( l;t ) , which maps procedure identi�ers
to their declaration. The declaration of a procedurep 2 P ( l;t ) consists of its formal
parameters, its body, and a return expression,

Record decl( l;t )
def= f args: Vl

� ; body: C; re : Et g

An environment speci�es the type of the parameters and the return expression of
procedures, so that procedure calls are always well-typed.In a typical formalization,
the environment will map procedures to closed commands, with the exception of
adversaries whose code is unknown, and thus modeled by variables of type C. This
is a standard trick to deal with uninterpreted functions in a deep embedding.

We frequently make no distinction between a gameG = ( c; E) and its main
command c when the environment either has no relevance or is clear fromthe
context. In the remainder, we revert to a more natural notation to specify games:
we rely on standard notation as in [Barthe et al. 2009a,c]. Inparticular, we write
procedures that might have multiple exit points and use explicit return instructions
instead of specifying a single return expression.

2.2.2 Semantics

The semantics of commands and expressions depends on a natural number repre-
senting the security parameter. As we have seen, the interpretation of types and
operators may depend on this parameter, but for the sake of readability we omit
it most of the time. The denotation of a command is de�ned relative to an initial
memory, mapping variables to values of their respective types. Since variables are
partitioned into local and global variables, we will sometimes represent a memorym
as a pair of mappings(m:loc; m:glob) for local and global variables, respectively. We
let M denote the type of memories and? denote a mapping associating variables
to default values of their corresponding types.

Expressions are deterministic; their semantics is standard and given by a func-
tion

Je : Et KE : M ! interp t

that evaluates an expression in a given memory and returns a value of the right
type. The semantics of distribution expressions is given bya function a

Jd : DEt KDE : M ! D (interp t)

that given a distribution expression d of type t and a memorym, returns a measure
over values of typet. For instance, in Section 1.4.2 we have usedf 0; 1g` to denote
the uniform distribution on bitstrings of a certain length `; formally, we have
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Jf 0; 1g` KDE m : D
�
f 0; 1g` � def= �f:

X

x 2f 0;1g`

2� ` f (x)

Observe that distribution expressions are not restricted to constant distributions.
Indeed, for any expression of typee 2 ENat , the semantics of the uniform distribution
on the natural interval [0::e] depends on the evaluation ofe,

J [0::e] KDE m : D(N) def= �f:
nX

i =0

1
n + 1

f (i ) where n = JeKE m

Thanks to dependent types, the semantics of expressions anddistribution expres-
sions is total. In the following, and whenever there is no confusion, we will drop the
subscripts in J�KE and J�KDE .

The (small-step) semantics of commands relates an initial deterministic state to
a sub-probability distribution over �nal deterministic st ates. It uses a frame stack
to deal with procedure calls. Formally, a deterministic state is a triple consisting of
the current command c : C, a memory m : M , and a frame stackF : frame?. We
let S denote the set of deterministic states,

S def= C � M � frame?

One step executionJ�K1 : S ! D (S) is de�ned by the rules of Figure 2.1; in the
�gure, we use a  b as a notation for JaK1 = b.

We brie�y comment on the transition rules for calling a procedure (5th rule)
and returning from a call (2nd rule). Upon a call, a new frame is appended to
the stack, containing the destination variable, the return expression of the called
procedure, the continuation to the call, and the local memory of the caller. The
state resulting from the call contains the body of the calledprocedure, the global
part of the memory, a local memory initialized to map the formal parameters to
the value of the actual parameters just before the call, and the updated stack.
When returning from a call with a non-empty stack, the top fra me is popped, the
return expression is evaluated and the resulting value is assigned to the destination
variable after previously restoring the local memory of thecaller; the continuation
taken from the frame becomes the current command. If the stack is empty when
returning from a call, the execution of the program terminates and the �nal state
is embedded into the monad using theunit operator.

We then de�ne an n-step execution function J�Kn as follows:

JsK0 def= unit s
JsKn +1 def= bind JsKn J�K1

Finally, the denotation of a command c in an initial memory m is de�ned to be the
(limit) distribution of reachable �nal memories:

JcKm : D(M ) def= �f: sup f J(c; m; nil)Kn f j �nal j n 2 Ng

where f j �nal is a function that when applied to a state (c; m; F ) equalsf (m) if the
state is a �nal state and 0 otherwise, i.e.
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(skip; m; nil)  unit (skip; m; nil)

(skip; m; (x; e; c; l) :: F )  unit (c; (l; m: glob)f JeKE m=xg; F )

(x  e; c; m; F )  unit (c; mf JeKE m=xg; F )

(x $ d; c; m; F )  bind (JdKDE m) ( �v: unit (c; mf v=xg; F ))

(x  p(e); c; m; F )  
unit (p:body; (? f JeKE m=p:argsg; m:glob);

(x; p:re; c; m:loc) :: F )

(if e then c1 elsec2 ; c; m; F )  

(
unit (c1 ; c; m; F ) if JeKE m = true
unit (c2 ; c; m; F ) if JeKE m = false

(while e do c; c0; m; F )  

(
unit (c; while e do c; c0; m; F ) if JeKE m = true
unit (c0; m; F ) if JeKE m = false

Fig. 2.1. Probabilistic one-step semantics of pWhile programs.

f j �nal (c; m; F ) : S ! [0; 1]

f j �nal (c; m; F ) def=

(
f (m) if c = skip^ F = nil

0 otherwise

The set of �nal states grows monotonically as the number of execution steps in-
creases, which implies that the sequenceJ(c; m; nil)Kn f j �nal is increasing because
f is non-negative. Because, in addition, this sequence is upper bounded by 1, the
least upper bound in the de�nition of the denotation of a command always exists
and corresponds to the limit of the sequence.

Figure 2.2 summarizes the denotational semantics of commands as equations
following from the above limit construction. The denotatio n of a program relates an
initial memory to a (sub-)probability distribution over me mories using the measure
monad presented in the previous section:

JcK: M ! D (M )

Note that the function J�K maps M to D(M ), but it is trivial�although less
convenient�to de�ne a semantic function J�K# from D(M ) to D(M ) using the
bind operator of the monad:

JcK# : D(M ) ! D (M )
JcK# def= ��: bind � JcK

We have shown that the semantics of programs maps memories todiscrete dis-
tributions, provided expressions in DE evaluate to distributions with countable
support. We use this together with Lemma 2.3 to prove the soundness of some
relational Hoare logic rules (namely, [Comp] and [Trans]) in Section 3.1.
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JskipKm = unit m

Ji ; cKm = bind (JiKm) JcK

Jx  eKm = unit mf JeKE m=xg

Jx $ dKm = bind (JdKDE m) ( �v: unit mf v=xg)

Jx  p(e)Km = bind (Jp:bodyK(? f JeKE m=p:argsg; m:glob))
(�m 0: unit (m:loc; m0:glob)f Jp:reKE m0=xg)

Jif e then c1 elsec2Km =
�

Jc1Km if JeKE m = true
Jc2Km if JeKE m = false

Jwhile e do cKm = �f: sup (�n: J[while e do c]n Km f )
where
[while e do c]0 = skip
[while e do c]n +1 = if e then c; [while e do c]n

Fig. 2.2. Denotational semantics of pWhile programs.

Computing probabilities

The advantage of using this monadic semantics is that, if we use an arbitrary
function as a continuation to the denotation of a program, what we get (for free) as
a result is its expected value w.r.t. the distribution of �na l memories. In particular,
we can compute the probability of an eventA (represented as a function inM ! B)
in the distribution obtained after executing a command c in an initial memory m
by measuring its characteristic function 1A :

Pr [c; m : A] def= JcKm 1A

For instance, one can verify that the denotation of x $ f 0; 1g; y $ f 0; 1g in an
initial memory m is

�f:
1
4

(f (mf 0; 0=x; yg) + f (mf 0; 1=x; yg) + f (mf 1; 0=x; yg) + f (mf 1; 1=x; yg))

and conclude that the probability of the event (x ) y) after executing the command
above is3=4.

In what follows, when writing probabilities we sometimes omit the initial mem-
ory m; in that case one may safely assume that the memory is initially ? , which
maps variables to default values of the right type.

2.3 Probabilistic Polynomial-Time Programs

In general, cryptographic proofs reason about e�ective adversaries, consuming poly-
nomially bounded resources. The complexity notion that captures this intuition, and
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which is pervasive in cryptographic proofs, is that ofstrict probabilistic polynomial-
time [Goldreich 2001]. Concretely, a program is said to be strictprobabilistic
polynomial-time (PPT) whenever there exists a polynomial bound (in some secu-
rity parameter � ) on the cost of each possible execution, regardless of the outcome
of its random choices. Said otherwise, a probabilistic program is PPT whenever the
same program seen as a non-deterministic program terminates and the cost of each
possible run is bounded by a polynomial.

Termination and e�ciency are orthogonal. Consider, for instance, the following
two programs:

c1
def= b  true; while b do b $ f 0; 1g

c2
def= b $ f 0; 1g; if b then while true do skip

The former terminates with probability 1 (it terminates wit hin n iterations with
probability 1 � 2� n ), but may take an arbitrarily large number of iterations to
terminate. The latter terminates with probability 1=2, but when it does, it takes
only a constant time. We deal with termination and e�ciency s eparately.

De�nition 2.5 (Termination). The probability that a program c terminates
starting from an initial memory m is Pr [c; m : true] = JcK m 1. We say that a
program c is absolutely terminating, and note it lossless(c), i� it terminates with
probability 1 in any initial memory,

lossless(c) def= 8m: Pr [c; m : true] = 1

To deal with e�ciency, we non-intrusively instrument the se mantics of our language
to compute the cost of running a program. The instrumented semantics ranges over
D(M� N) instead ofD(M ). We recall that our semantics is implicitly parametrized
by a security parameter � , on which we base our notion of complexity. Our charac-
terization of PPT programs relies on an axiomatization of the execution time and
memory usage of expressions:

� We postulate the execution time of each operator, in the formof a function
that depends on the inputs of the operator�which corresponds to the so-called
functional time model;

� We postulate for each datatype a size measure, in the form of afunction that
assigns to each value its memory footprint.

We stress that making complexity assumptions on operators is perfectly legitimate.
It is a well-known feature of dependent type theories (as is the case of the cal-
culus of Coq) that they cannot express the cost of the computations they purport
without using computational re�ection, i.e. formalizing a n execution model, such as
probabilistic Turing machines, within the theory itself an d proving that functions
in type theory denote machines that execute in polynomial time. In our opinion,
such a step is overkill. A simpler solution to the problem is to restrict in as much
as possible the set of primitive operators, so as to minimizethe set of assumptions
upon which the complexity proofs rely.
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De�nition 2.6 (Polynomially bounded distribution). We say that a family
of distributions f � � : D(M � N)g is (p; q)-bounded, wherep and q are polynomials,
whenever for every value of the security parameter� and any pair (m; n) occurring
with non-zero probability in � � , the size of values inm is bounded byp(� ) and the
cost n is bounded byq(� ). This notion can be formally de�ned by means of therange
predicate introduced in Section 2.1.3:

bounded(p; q; � ) def
= 8�: range(� (m; n): 8x 2 V : jm(x)j � p(� ) ^ n � q(� )) � �

De�nition 2.7 (Strict probabilistic polynomial-time prog ram). We say that
a program c is strict probabilistic polynomial-time (PPT) i� it terminat es absolutely,
and there exist polynomial transformers F; G such that for every (p; q)-bounded
distribution family � � , (bind � � JcK) is (F (p); q + G(p)) -bounded.

We can recover some intuition by taking � = unit (m; 0) in the above de�nition.
In this case, we may paraphrase the condition as follows: if the size of values inm is
bounded by some polynomialp, and an execution of the program inm terminates
with non-zero probability in memory m0, then the size of values inm0 is bounded by
the polynomial F (p), and the cost of the execution is bounded by the polynomial
G(p). It is in this latter polynomial that bounds the cost of executing the program
that we are ultimately interested. The increased complexity in the de�nition is
needed for proving compositionality results, such as the fact that PPT programs
are closed under sequential composition.

Although our formalization of termination and e�ciency rel ies on semantic def-
initions, it is not necessary for users to reason directly about the semantics of a
program to prove it meets those de�nitions. CertiCrypt implements a certi�ed al-
gorithm showing that every program without loops and recursive calls terminates
absolutely.1 We also provide another algorithm that, together with the �r st, estab-
lishes that a program is PPT provided that, additionally, th e program does not
contain expressions that might generate values of super-polynomial size or take a
super-polynomial time when evaluated in a polynomially bounded memory.

Exact bounds on execution time

Extracting an exact security result from a reductionist game-based proof requires
to lower bound the success probability of the reduction and to upper bound the
overhead incurred in execution time. Computing a bound on the success probability
is what takes most of the e�ort since it requires examining the whole sequence of
games and a careful bookkeeping of the probability of events. On the other hand,
bounding the overhead of a reduction only requires examining the last game in
the sequence. While we have put a great e�ort in automating the computation of
probability bounds and we developed an automated method to obtain asymptotic

1 It is of course a weak result in terms of termination of probab ilistic programs, but nev-
ertheless su�cient as regards cryptographic applications . Extending our formalization
to a certi�ed termination analysis for loops is interesting , but orthogonal to our main
goals.
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polynomial bounds on the execution time of reductions, we did not bother to provide
a method to compute exact time bounds. To do so, we would need an alternative
cost-instrumented semantics that does not take into account the time spent in
evaluating calls to oracles, but instead just records the number of queries that have
been made. Assume that an adversaryA executes within time t (without taking
into account oracle calls) and makes at mostqO i queries to oracleOi . Suppose we
have a reduction where an adversaryB usesA as a sub-procedure; assume wlog
that B only calls A once and does not make any additional oracle calls. Then, we
can argue that if B executes within time t0 without taking into account the cost of
evaluating calls to A (this could easily be computed by consideringA as an oracle
for B), then B executes within time

t + t0+
X

i

qO i tO i

where tO i upper bounds the cost one query to oracleOi .

2.4 Adversaries

In order to reason about games in the presence of unknown adversaries, we must
specify an interface for adversaries and construct proofs under the assumption that
adversaries are well-formed against their speci�cation. Assuming that adversaries
respect their interface provides us with an induction principle to reason over all
(well-formed) adversaries. We make an extensive use of thisinduction principle:
each time a proof system is introduced, the principle allowsus to establish proof
rules for adversaries. Likewise, each time we implement a program transformation,
the induction principle allows us to prove the correctness of the transformation for
programs that contain procedure calls to adversaries.

Formally, the interface of an adversary consists of a triple(O; RW ; R), whereO
is the set of procedures that the adversary may call,RW the set of variables that it
may read and write, andR the set of variables that it may only read. We say that an
adversaryA with interface (O; RW ; R) is well-formed if the judgment ` wf A can be
derived from the rules in Figure 2.3. Note that the rules are generic, only making
sure that the adversary makes a correct use of variables and procedures. These
rules guarantee that a well-formed adversary always initializes local variables before
using them, only writes global variables inRW , and only reads global variables in
RW [ R . For convenience, we allow adversaries to call procedures outside O, but
these procedures must themselves respect the same interface.

Additional constraints may be imposed on adversaries. For example, exact se-
curity proofs usually impose an upper bound to the number of calls adversaries
can make to a given oracle, while some properties, such asIND-CCA2 (see Ÿ2.5.2
below), restrict the parameters with which oracles may be called at di�erent stages
in an experiment. Likewise, some proofs impose extra conditions such as forbidding
repeated or malformed queries. These kinds of properties can be formalized using
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I ` skip: I I ` i : I 0 I 0 ` c:O
I ` i ; c:O

writable(x) fv(e) � I

I ` x  e: I [ f xg

writable(x) fv(d) � I

I ` x $ d: I [ f xg

fv(e) � I I ` c1 :O1 I ` c2 :O2

I ` if e then c1 elsec2 :O1 \ O2

fv(e) � I I ` c: I

I ` while e do c: I

fv(e) � I writable(x) p 2 O

I ` x  p(e) : I [ f xg

fv(e) � I writable(x) ` wf B

I ` x  B (e) : I [ f xg

RW [ R [ A :args` A :body:O fv(A :re) � O

` wf A

writable(x) def= local(x) _ x 2 RW

Fig. 2.3. Rules for well-formedness of an adversary against interface (O; RW ; R ). A
judgment of the form I ` c : O can be interpreted as follows: assuming variables in I
may be read, the adversarial code fragmentc respects the interface and after its execution
variables in O may be read. Thus, if I ` c:O, then I � O.

global variables that record calls to oracles and verifyingas post-condition that all
calls were legitimate.

2.5 Making Security Properties Precise

Before going any further in the formalization of cryptographic proofs, we need to
be sure that the results that we prove are meaningful. Security de�nitions in cryp-
tography have so many subtleties that it is not clear that the whole cryptographic
community agrees even on the most fundamental of these de�nitions. To illustrate
this point, let us analyze in detail two pervasive de�nition s that we use in subse-
quent chapters: the security of a signature scheme against existential forgery under
adaptive chosen-message attacks (EF-CMA security), and the indistinguishability
under adaptive chosen-ciphertext attacks (IND-CCA2 security) of an encryption
scheme.

2.5.1 EF-CMA Security

We start by recalling the de�nition of digital signature sch emes.

De�nition 2.8 (Digital signature scheme). A digital signature scheme is com-
posed of a triple of algorithms:

Key generation: Given a security parameter � , the key generation algorithmKG(� )
returns a public/secret key pair (pk; sk);

Signing: Given a secret keysk and a messagem, the signing algorithm
Sign(sk; m) produces a signature ofm under sk;
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Veri�cation: Given a public keypk, a messagem, and a purported signature�
for m, the veri�cation algorithm Verify(pk; m; � ) returns a Boolean
value indicating whether the signature is valid or not.

Key generation and signing may be probabilistic, while the veri�cation algorithm is
deterministic. We require that veri�cation always succeeds for authentic signatures:
for every pair of keys(pk; sk) that can be output by the key generation algorithm,
and every messagem, it must be the case thatVerify(pk; m; Sign(sk; m)) = true.

We informally describe the way in which EF-CMA security is typically de�ned.
The experiment begins by choosing a public veri�cation keypk and a secret signing
key sk, using the key-generation algorithm of the signature scheme. The public key
is given to the forger, who can ask for the signature of messages of its choice to a
signing oracle and eventually halts and outputs a messagem together with a pur-
ported signature � . The forger wins when the signature� veri�es. We say that the
scheme is secure when the winning probability of any probabilistic polynomial-time
forger is negligible. Since the forger could trivially win by asking for the signature
of m, the forger is not allowed to querym to the signing oracle. Figure 2.4 depicts
this experiment as a game.

Game GA
EF :

S  nil;
(pk; sk )  KG (� );
(m; � )  A (pk)

Oracle SignA (m) :
S  m :: S;
�  Sign(sk ; m);
return �

Fig. 2.4. The EF-CMA experiment; the signing oracle is instrumented to record th e queries
made by the forger.

The above de�nition seems unambiguous at �rst sight. There are however two
ways of forbidding the adversary from queryingm to the signing oracle. The �rst
is simply to reject adversaries that may query m with non-zero probability; this
amounts to restrict the quanti�cation over adversaries�ins tead of considering all
e�cient forgers one considers only those forgers that do notquery the message
they output to the signing oracle. The second way is to test a posteriori whether
the adversary queried m to its oracle, and to declare that it lost in this case.
Following [Bellare et al. 2009], we call the former de�nitional style the exclusion
(�E�) style and the latter the penalty (�P�) style. Both styles are common and
used interchangeably in the literature; for instance [Bellare and Rogaway 1996;
Katz and Wang 2003] use the penalty style while [Bellare and Rogaway 1993] uses
the exclusion style. The question is whether the two styles result in equivalent
de�nitions or not.

It should be clear that security in the penalty style implies security in the
exclusion style. To see this, consider any e�cient forgerA valid in the exclusion
style de�nition. The forger is also valid in the penalty styl e de�nition and it achieves
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the same success probability. Since the probability ofA ever querying the message
m whose signature it forges is 0, we have

Pr
�
GA

EF : Verify(pk; m; � )
�

= Pr
�
GA

EF : Verify(pk; m; � ) ^ m =2 S
�

Implication in the other direction (i.e., that security in t he exclusion style implies
security in the penalty style de�nition) is not as evident. G iven an adversary A
that forges a signature for a fresh messagem with non-negligible probability, but
that may ask the signature of the messagem to the signing oracle with non-zero
probability, can we construct an adversary that never queriesm to the signing oracle
and achieves comparable success in forging a signature? Thetheorem we present
next proves that we can and, what is more, without any probability loss.

Theorem 2.9. If a signature scheme isEF-CMA secure according to the exclusion
style de�nition, then it is secure according to the penalty style de�nition.

Proof. Let A be an adversary against theEF-CMA security of the scheme in the
penalty style de�nition. We exhibit an adversary B that is valid in the exclusion
style de�nition and outputs a successful forgery with at least the same probability
as A:

Adversary B(pk) :
S  nil;
(m; � )  A (pk);
if m 2 S then m $ f 0; 1gk nS
return (m; � )

Oracle SignA (m) :
S  m :: S;
�  SignB (m);
return �

The forger B usesA as a subroutine; it intercepts the signing queries thatA makes
and answers them using oracleSignA . This oracle just records the message queried
and forwards it to the original signing oracle. When A outputs a purported forgery
(m; � ), B checks ifm ever appeared in a signing query and if it is the case, replaces
m with a fresh message. We have thatm =2 S and S = S are post-conditions of
gameGB

EF, which implies that B is a valid adversary according to the exclusion style
de�nition. In addition,

Pr
�
GA

EF : Verify(pk; m; � ) ^ m =2 S
�

� Pr
�
GB

EF : Verify(pk; m; � )
�

ut

For a matter of taste and de�nitional clarity, we de�ne EF-CMA security using
the penalty style.

De�nition 2.10 (EF-CMA security). A signature scheme(KG; Sign; Verify) is
secure against existential forgeries under chosen-messageattacks if the probability

Pr
�
GA

EF : Verify(pk; m; � ) ^ m =2 S
�

is negligible for any probabilistic polynomial-time adversary A .
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The penalty and exclusion style de�nitions of EF-CMAsecurity turned out to be
perfectly equivalent. Indeed, this equivalence can be regarded as folklore. This may
lead us to think that there is no point in analyzing this kind o f subtle di�erences
in security de�nitions. But such a way of thinking is perilou s. We have been lucky
that both formulations of EF-CMA security are equivalent. We will see in the next
section that being sloppy can sometimes lead to consider as equivalent de�nitions
that in reality are not.

2.5.2 IND-CCA2 Security

The notion of IND-CCA2security for an encryption scheme is de�ned relative to a
two-phase experiment where the adversary has access to a decryption oracle. The
experiment begins by generating a pair of keys(pk; sk) and giving the public key
pk to the adversary. In the �rst phase the adversary chooses twomessagesm0 and
m1. The challenger then tosses a fair coinb, encrypts mb under pk and gives the
resulting ciphertext ĉ back to the adversary. The adversary ends the second phase
by outputting a guess ~b for the hidden bit b. Figure 2.5 depicts this experiment as
a game. We say that the scheme isIND-CCA2secure if no probabilistic polynomial-
time adversary A guessesb correctly with a probability non-negligibly greater than
1=2.

Game GINDCCA :
L D  nil;
(pk; sk )  KG (� );
(m0 ; m1)  A 1(pk);
b $ f 0; 1g;
ĉ  E (pk; mb);
ĉdef  true;
~b  A 2(ĉ)

Oracle DA (c) :
L D  (ĉdef; c) :: L D ;
m  D (sk ; c);
return m

Fig. 2.5. The IND-CCA2 experiment; the decryption oracle is instrumented to recor d the
queries made in each phase.

Observe that the adversary could trivially win by asking the decryption oracle to
decrypt ĉ. Consequently, the de�nition forbids the adversary from querying ĉ to the
decryption oracle. As in the de�nition of EF-CMA security in the previous section,
there are two ways of enforcing this restriction, in a penalty style or in an exclusion
style. In addition, we now face another dilemma: should we allow the adversary
to query ĉ to its oracle in the �rst phase of the experiment or should we forbid
such type of queries altogether? These two dimensions give rise to four di�erent
ways of formally de�ning IND-CCA2security. Namely, in a penalty style, restricting
the oracle queries only in the second phase of the experiment(IND-CCA2-SP) or in
both ( IND-CCA2-BP), and in an exclusion style, restricting the queries only inthe
second phase (IND-CCA2-SE) or in both phases (IND-CCA2-BE). There are some
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obvious relations between these de�nitions. As in the case of EF-CMA security,
security in a penalty style de�nition implies security in th e corresponding exclusion
style de�nition. In a similar manner, security in the versio n of the de�nitions where
the adversary is forbidden to query the challenge ciphertext ĉ just in the second
phase implies security when this prohibition is extended tothe �rst phase of the
experiment. Figure 2.6 summarizes these and the remaining non-trivial relations
between the di�erent formulations of IND-CCA2security.

IND-CCA2-SP IND-CCA2-BP

IND-CCA2-SE IND-CCA2-BE6

6

�

Fig. 2.6. Relations between the di�erent formulations of IND-CCA2 security. An impli-
cation X ! Y means that security according to de�nition X implies security according to
Y. A negated implication is a separation result.

Surprisingly, neither of the �B� style de�nitions implies s ecurity in the corre-
sponding �S� variant. What is more, the penalty and the exclusion style de�nitions
are not equivalent if the adversary is forbidden from querying ĉ to its oracle in
both phases of theIND-CCA2experiment. We will give a proof of the implication
IND-CCA2-SE! IND-CCA2-SPand a rough idea of how to construct pathologi-
cal schemes that justify the separation resultsIND-CCA2-BP9 IND-CCA2-SPand
IND-CCA2-BE9 IND-CCA2-BP; the separation ofIND-CCA2-SEand IND-CCA2-BE
follows from the diagram. For further details the reader may refer to [Bellare et al.
2009], where these results were �rst reported.

Theorem 2.11. If an encryption scheme(KG; E; D) is IND-CCA2-SEsecure, then
it is IND-CCA2-SPsecure as well.

Proof. We show that for any adversary A = ( A 1; A 2) against the IND-CCA2-SP
security of the scheme, there exists anIND-CCA2-SEadversary B that guesses the
hidden bit b with at least the same probability and does not query the challenge
ciphertext in the second phase of the experiment.

In the �rst phase, B behaves exactly asA. When B gets the challenge ciphertext
ĉ, it calls A 2(ĉ) in a simulated environment where it replaces the decryptionoracle
with an oracle of its own; B2 returns whatever A 2 returns. When A 2 makes a
decryption query c, if c 6= ĉ, the simulated oracle responds by forwarding the query
to the original oracle, otherwise it returns some �xed message ? . It is easy to see
that B2 never queries the challengêc to the decryption oracle. Moreover, we have

Pr
h
GA

IND� CCA : ~b = b^ (true; ĉ) =2 L D

i
= Pr

h
GB

IND� CCA : ~b = b^ (true; ĉ) =2 L D

i

� Pr
h
GB

IND� CCA : ~b = b
i

which concludes the proof. ut
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Theorem 2.12. The three separation results from Figure 2.6 hold.

Proof.

IND-CCA2-BP9 IND-CCA2-SP:

Let (KGf ; f; f � 1) be a family of trapdoor one-way permutations and(KG; E; D) an
IND-CCA2-BPsecure encryption scheme. We show how to construct an encryption
scheme(KG; E; D) which is IND-CCA2-BPsecure but not IND-CCA2-SPsecure.

KG(� ) :
(pk; sk)  KG (� );
(pkf ; skf )  KG f (� );
x̂ $ f 0; 1gk ;
ŷ  f (pkf ; x̂);
pk  (pk; pkf ; ŷ);
sk  (sk; x̂);
return (pk; sk)

E((pk; pkf ; ŷ); m) :
if f (pkf ; m) = ŷ then

return 1 k 1k

else
c  E (pk; m);
return 0 k c

D((sk; x̂); s k c) :
if s = 0 then

return D(sk; c)
else

if c = 1 k then
return x̂

else return?

The above scheme is devised in such a way that the ability of anadversary to query
the challenge ciphertext in the �rst phase leads to an attack, but this attack is no
longer possible if such a query is disallowed. The intuitionis to introduce a weak
messagêx with a single ciphertext (1k1k ). This message should be hard to compute
without the secret key of the scheme, but it can be trivially obtained by asking for
the decryption of (1k1k ). In the other hand, the encryption algorithm of the scheme
should be able to e�ciently test if a given message equals theweak messagêx. We
include the messagêx in plain as part of the secret key of the scheme, but conceal
its value in the public key using a one-way permutation.

To show that the above scheme is notIND-CCA2-SPsecure, consider the follow-
ing adversary (A 1; A 2):

Adversary A 1(pk) :
m0  D (1 k 1k );
m1 $ f 0; 1gk n f m0g;
return (m0; m1)

Adversary A 2(c) :
if c = 1 k 1k then return0
else return1

This adversary guesses the hidden bit in theIND-CCA2experiment with probabil-
ity 1. However, it queries the challenge ciphertext to the decryption oracle with
probability 1=2 during its �rst phase, and therefore this adversary does notdo any
better than a random guess according to the winning condition of the IND-CCA2-BP
variant.

To see why the scheme isIND-CCA2-BPsecure, observe that the only way to
guess the hidden bitb with probability signi�cantly greater than 1=2 is to either
break the security of the original encryption scheme, or to somehow obtain the
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value of the weak messagêx. Indeed, given an adversaryB that breaks the IND-
CCA2-BPsecurity of the scheme with non-negligible probability, one can construct
an adversary A against the IND-CCA2-BPsecurity of the original scheme and an
inverter I for the one-way trapdoor permutation such that at least one of them
succeeds with non-negligible probability [Bellare et al. 2009,Theorem 3.1].

IND-CCA2-BE9 IND-CCA2-BP:

Let (KG; E; D) be an encryption schemeIND-CCA2-BE secure. Again, using a
trapdoor one-way permutation (KGf ; f; f � 1) we construct an encryption scheme
(KG; E; D) which is IND-CCA2-BEsecure but not IND-CCA2-BPsecure.

KG(� ) :
(pk; sk)  KG (� );
(pkf ; skf )  KG f (� );
x̂ $ f 0; 1gk ;
ŷ  f (pkf ; x̂);
pk  (pk; pkf ; ŷ);
sk  (sk; x̂);
return (pk; sk)

E((pk; pkf ; ŷ); m) :
if f (pkf ; m) = ŷ then

w $ f 0; 1gk ;
return 1 k w

else
c  E (pk; m);
return 0 k c

D((sk; x̂); s k c) :
if s = 0 then

return D(sk; c)
else

if jcj = k then
return x̂

else return?

To show that the above scheme is notIND-CCA2-BPsecure, consider the following
adversary (A 1; A 2):

Adversary A 1(pk) :
m0  D (1 k 1k );
m1 $ f 0; 1gk n f m0g;
return (m0; m1)

Adversary A 2(s k c) :
if s = 1 then return0
else return1

This adversary guesses the hidden bit in theIND-CCA2 game with probability 1
and queries the challenge ciphertext to the decryption oracle only with probability
2� k =2. Therefore, its winning probability according to IND-CCA2-BPis 1 � 2� k =2.
Observe, however, that this adversary is not valid according to the IND-CCA2-BE
variant because it queries the challenge ciphertext to the decryption oracle with
non-zero probability.

To see why the scheme isIND-CCA2-BEsecure, observe that the only way to
guess the hidden bitb with probability signi�cantly greater than 1=2 is to either
break the IND-CCA2-BPsecurity of the original encryption scheme, or to somehow
obtain the value of the weak messagêx. But a valid adversary cannot obtain the
value x̂ from the decryption oracle because any ciphertext of the form (1 k c) might
be the challenge ciphertext with probability 2� k =2. Therefore, x̂ is concealed by
the one-way permutation and any adversary that succeeds in obtaining it can be
used to invert the permutation with non-negligible probability.
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IND-CCA2-BE9 IND-CCA2-SE:

Follows from the above separation results and the diagram inthe �gure. ut

In the remainder whenever we talk aboutIND-CCA2security we will be referring
to the IND-CCA2-SEvariant of the de�nition, which is together with IND-CCA2-SP
the strongest variant according to the taxonomy in Figure 2.6.

De�nition 2.13 (IND-CCA2 security). An encryption scheme (KG; E; D) is
IND-CCA2secure if the advantage

�
�
�
�Pr

h
GA

INDCCA : ~b = b
i

�
1
2

�
�
�
�

is negligible for any probabilistic polynomial-time adversary A that does not query
the decryption oracle with the challenge ciphertext during thesecond phase of the
IND-CCA2experiment.
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3
Reasoning about Games

According to Shoup [2004], steps in game-based cryptographic proofs can be
classi�ed into three broad categories:

1. Transitions based on indistinguishability, which are typically justi�ed by ap-
pealing to a decisional assumption (e.g. theDDH assumption);

2. Transitions based on failure events, where it is argued that two games behave
identically unless a failure event occurs;

3. Bridging steps, which correspond to refactoring the codeof games in a way that
is not observable by adversaries. This is in general done to prepare the ground
for applying a lossy transition of one of the above two classes.

A bridging step from a gameG1 to a gameG2 typically replaces a program fragment
c1 by an observationally equivalent fragmentc2. In general, however,c1 and c2 are
observationally equivalent only in the particular context where the substitution is
done. We justify such transitions through a relational Hoare logic that generalizes
observational equivalence through pre- and post-conditions that characterize the
context where the substitution is valid. This relational Ho are logic may as well be
used to establish (in)equalities between the probability of events in two games (as
shown by the rules [PrEq] and [PrLe] below) and to establish program invariants
that serve to justify other program transformations or more complex probabilistic
reasoning.

3.1 Probabilistic Relational Hoare Logic (pRHL)

The relational Hoare logic that we propose elaborates on andextends to probabilis-
tic programs Benton's 2004 relational Hoare logic. Benton's logic uses judgments
of the form ` c1 � c2 : 	 ) � , that relate two programs, c1 and c2, w.r.t. a
pre-condition 	 and a post-condition � , both de�ned as relations on deterministic
states. Such a judgment states that for every pair of initial memoriesm1; m2 sat-
isfying the pre-condition 	 , if the evaluations of c1 in m1 and c2 in m2 terminate

41
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with �nal memories m0
1 and m0

2 respectively, then m0
1 � m 0

2 holds. In a proba-
bilistic setting, the evaluation of a program in an initial m emory yields instead a
(sub-)probability distribution over program memories. In order to give a meaning
to a judgment like the above one, we therefore need to lift relations over memories
to relations over distributions.1 We use the mechanism presented in Section 2.1.

De�nition 3.1 (pRHL judgment). We say that two programsc1 and c2 are
equivalent with respect to pre-condition	 and post-condition � i�

` c1 � c2 : 	 ) � def
= 8m1 m2: m1 	 m 2 =) (Jc1Km1) � # (Jc2Km2)

De�nition 3.2 (Semantic equivalence). We say that two programsc1 and c2

are semantically equivalent, and note it as̀ c1 � c2, if they are equivalent w.r.t
equality on memories as pre- and post-condition.

Rather than de�ning the rules for pRHL and proving them sound in terms of
the meaning of judgments, we place ourselves in a semantic setting and derive the
rules as lemmas. This allows to easily extend the system by deriving extra rules, or
even to resort to the semantic de�nition if the system turns out to be insu�cient.
Figure 3.1 gathers some representative derived rules. To improve readability, we
de�ne for a Boolean expressione the relations

eh1i def= �m 1 m2: JeKm1 = true eh2i def= �m 1 m2: JeKm2 = true

As pRHL allows for arbitrary relations, we freely use higher-order logic; in partic-
ular, PER and SYM are predicates over relations that stand forpartial equivalence
relation and symmetric relation respectively.

Most rules admit, in addition to their symmetrical version o f Figure 3.1, one-
sided (left and right) variants, e.g. for assignments

m1 	 m 2 = ( m1f Je1Km1=x1g) � m 2

` x1  e1 � skip : 	 ) �
[Assn1]

The rule [Case] allows to reason by case analysis on the evaluation of an arbitrary
relation in the initial memories. Together with simple rules in the spirit of

` c1 � c : 	 ^ eh1i ) �

` if e then c1 elsec2 � c : 	 ^ eh1i ) �
[Cond1T]

it subsumes [Cond] and allows to prove judgments that otherwise would not be
derivable, such as the semantic equivalence of the programs(if e then c1 elsec2)
and (if : e then c2 elsec1):

1 An alternative would be to develop a logic in which 	 and � are relations over distri-
butions. However, we do not believe such a logic would allow a similar level of proof
automation.
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` skip � skip : � ) � [Skip]
` c1 � c2 : 	 ) � ` c0

1 � c0
2 : � ) �

` c1 ; c0
1 � c2 ; c0

2 : 	 ) �
[Seq]

m1 	 m 2 = ( m1 f Je1Km1=x1g) � (m2 f Je2Km2=x2g)

` x1  e1 � x2  e2 : 	 ) �
[Assn]

m1 	 m 2 =) (Jd1Km1) � # (Jd2Km2)
where v1 � v 2 = ( m1 f v1=x1g) � (m2 f v2=x2g)

` x1 $ d1 � x2 $ d2 : 	 ) �
[Rnd]

m1 	 m 2 =) Je1Km1 = Je2Km2

` c1 � c2 : 	 ^ e1h1i ) � ` c0
1 � c0

2 : 	 ^ : e1h1i ) �

` if e1 then c1 elsec0
1 � if e2 then c2 elsec0

2 : 	 ) �
[Cond]

m1 � m 2 =) Je1Km1 = Je2Km2 ` c1 � c2 : � ^ e1h1i ) �

` while e1 do c1 � while e2 do c2 : � ) � ^ : e1h1i
[While]

	 � 	 0 ` c1 � c2 : 	 0 ) � 0 � 0 � �
` c1 � c2 : 	 ) �

[Sub]

` c1 � c2 : 	 ) � SYM(	 ) SYM(� )

` c2 � c1 : 	 ) �
[Sym]

` c � c [Re�]
` c1 � c2 : 	 ) � ` c2 � c3 : 	 ) � PER(	 ) PER(� )

` c1 � c3 : 	 ) �
[Trans]

` c1 � c2 : 	 ^ 	 0 ) � ` c1 � c2 : 	 ^ : 	 0 ) �
` c1 � c2 : 	 ) �

[Case]

Fig. 3.1. Selection of derived rules of pRHL.

` c1 � c1 : = ^:: eh2i ) =
[Sub,Re�]

` c1 � if : e then c2 elsec1 : = ^:: eh2i ) =
[Cond2F]

` c1 � if : e then c2 elsec1 : = ^ eh1i ) =
[Sub]

` if e then c1 elsec2 � if : e then c2 elsec1 : = ^ eh1i ) =
[Cond1T] � � �

` if e then c1 elsec2 � if : e then c2 elsec1
[Case]

We use [Case] as well to justify the correctness of data�ow analyses that exploit
the information provided by entering branches.

The rule [Sym] can be generalized by taking the inverse of therelations instead
of requiring that pre- and post-condition be symmetric:

` c1 � c2 : 	 ) �
` c2 � c1 : 	 � 1 ) � � 1 [Inv]

The rule [Trans], although appealing, is of limited practical use. Consider, for in-
stance, �independent� pre- and post-conditions of the form
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m1 	 m 2
def= 	 1 m1 ^ 	 2 m2 m1 � m 2

def= � 1 m1 ^ � 2 m2

In order to apply the rule [Trans], we are essentially forcedto have

	 1 = 	 2 and � 1 = � 2

and we must also choose the same pre- and post-condition for the intermediate
gamec2. This constraints make the rule [Trans] impractical in somecases; we use
instead the rule [Comp] to introduce intermediate games in those cases:

` c1 � c2 : 	 ) � ` c2 � c3 : 	 0 ) � 0

` c1 � c3 : 	 � 	 0 ) � � � 0 [Comp]

The soundness of this rule relies on Lemma 2.3 and on the fact that the denotation
of a program maps an initial memory to a distribution with cou ntable support. This
is true if we only allow values to be sampled from distributions with countable sup-
port, a reasonable restriction that does not a�ect our application to cryptographic
proofs.

We can specialize rule [Rnd] when the distributions from where random values
are sampled have countable support. In this case, there is a simpler condition that
makes the hypothesis of the rule hold. We say that two distributions � 1 : D(A) and
� 2 : D(B ) with countable support are equivalent modulo a relation R � A � B ,
and note it � 1 ' R � 2, when there exists a bijectionf : support(� 1) ! support(� 2)
such that

8a 2 support(� 1): � 1 I f ag = � 2 I f f (a)g ^ R(a; f (a))

We can then prove that the following rule is sound:

m1 	 m 2 =) Jd1Km1 ' � Jd2Km2 v1 � v 2 = ( m1f v1=x1g) � (m2f v2=x2g)

` x1 $ d1 � x2 $ d2 : 	 ) �
[Perm]

If d1 and d2 are both interpreted as uniform distributions over some setof values,
the premise of the rule boils down to exhibiting a bijection f between the supports
of (Jd1Km1) and (Jd2Km2) such that � (v; f (v)) holds for any v in the support of
Jd1Km1. To see that the rule is sound, note that � 1 ' R � 2 implies � 1 R# � 2; it
su�ces to take the following distribution as a witness for th e existential:

� def= bind � 1 (�v: unit(v; f (v)))

Hence, the soundness of the above rule is immediate from the soundness of rule
[Rnd]. Section 3.2.2 shows that rule [Perm] is enough to prove several program
equivalences appearing in cryptographic proofs. However,observe that rule [Perm]
is far from being complete as shown by the following program equivalence that
cannot be derived using just this rule:

` a $ [0::1] � b $ [0::3]; a  b mod 2 : true ) = f ag

One cannot use the above rule to prove such an equivalence because the supports
of the distributions from where random values are sampled inthe programs do not
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have the same size and hence it is not possible to �nd a bijection relating them. We
can further generalize the rule to prove the above equivalence by requiring instead
the existence of a bijection between the support of one distribution and a partition
of the support of the other, as in the following rule:

m1 	 m 2 =) let S1 = support(Jd1Km1); S2 = support(Jd2Km2) in
9f : S1 ! P (S2):

[

v2 S1

f (v) = S2 ^ (8v1 6= v2 2 S1: f (v1) \ f (v2) = ; ) ^
�
8v 2 S1: � 1 I f vg = � 2 I f (v) ^ 8 w 2 f (v): (m1f v=x1g) � (m2f w=x2g)

�

` x1 $ d1 � x2 $ d2 : 	 ) �

The following two rules allow to fall back from the world of pRHL into the world
of probabilities, in which security statements are expressed:

m1 	 m 2 ` c1 � c2 : 	 ) � � =) (Ah1i () B h2i )

Pr [c1; m1 : A] = Pr [ c2; m2 : B ]
[PrEq]

and analogously,

m1 	 m 2 ` c1 � c2 : 	 ) � � =) (Ah1i =) B h2i )

Pr [c1; m1 : A] � Pr [c2; m2 : B ]
[PrLe]

By taking A = B = true we can observe that observational equivalence enjoys some
form of termination sensitivity:

(` c1 � c2 : 	 ) � ) ^ m1 	 m 2 =) Jc1Km1 1 = Jc2Km2 1

We conclude with an example that nicely illustrates some of the intricacies of
pRHL. Let c = b $ f 0; 1g and � = ( bh1i = bh2i ). We have for any pair of initial
memories(JcKm1) � # (JcKm2). Indeed, the following distribution is a witness for
the existential of the lifting:

� f =
1
2

f (m1f 0=bg; m2f 0=bg) +
1
2

f (m1f 1=bg; m2f 1=bg)

Perhaps more surprisingly, we also have(JcKm1) : � # (JcKm2), for which it su�ces
to take the following distribution as a witness for the existential:

� 0 f =
1
2

f (m1f 0=bg; m2f 1=bg) +
1
2

f (m1f 1=bg; m2f 0=bg)

Thus, we have at the same time` c � c : true ) � and ` c � c : true ) : � (but
of course not` c � c : true ) false) and as a consequence the �obvious� rule

` c1 � c2 : 	 ) � ` c1 � c2 : 	 ) � 0

` c1 � c2 : 	 ) � ^ � 0

is unsound. While this example may seem unintuitive or even inconsistent if one
reasons in terms of deterministic states, its intuitive signi�cance in a probabilistic
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setting is that observing either � or : � is not enough to tell apart the distributions
resulting from two executions of c. This example shows why lifting a relation to
distributions involves an existential quanti�cation, and why it is not possible to
always use the product distribution as a witness (one cannotestablish neither of
the above judgments using the product distribution). This interpretation of pRHL
judgments is strongly connected to the relation between relational logics and infor-
mation �ow [Amtoft et al. 2006; Benton 2004]�formally charac terized for instance
by Benton's embedding of a type system for secure information �ow into RHL.

As an additional example, observe that we have

` x $ f 0; 1g; y $ f 0; 1g � x $ f 0; 1g; y  x : true ) = f x g

` x $ f 0; 1g; y $ f 0; 1g � x $ f 0; 1g; y  x : true ) = f yg

but clearly the following judgment does not hold

` x $ f 0; 1g; y $ f 0; 1g � x $ f 0; 1g; y  x : true ) = f x;y g

since after executing the program on the right-hand side thevalues of x and y
always coincide while this happens only with probability 1=2 for the program on
the left-hand side.

3.1.1 Observational Equivalence

Observational equivalence is derived as an instance of relational Hoare judgments
in which pre- and post-conditions are restricted to equality over a subset of pro-
gram variables. Observational equivalence of programsc1; c2 w.r.t. an input set of
variables I and an output set of variablesO is de�ned as

` c1 ' I
O c2

def= ` c1 � c2 : = I ) = O

The rules of pRHL can be specialized to the case of observational equivalence. For
example, for conditional statements we have

m1 = I m2 =) Je1Km1 = Je2Km2 ` c1 ' I
O c2 ` c0

1 ' I
O c0

2

` if e1 then c1 elsec0
1 ' I

O if e2 then c2 elsec0
2

It follows that observational equivalence is symmetric andtransitive, although it is
not re�exive. Indeed, observational equivalence can be seen as a generalization of
probabilistic non-interference: if we take I = O = L , the set of low variables, then
c is non-interferent i� ` c ' L

L c.
Observational equivalence is more amenable to mechanization than full-�edged

pRHL. To support automation, CertiCrypt implements a calculus of variable de-
pendencies and provides a functioneqobs_ in, that given a program c and a set
of output variables O, computes a set of input variablesI such that ` c ' I

O c.
Analogously, it provides a function eqobs_ out, that given a set of input variables
I , computes a set of output variablesO such that ` c ' I

O c. This suggests a simple
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procedure to establish a self-equivalence of the form̀ c ' I
O c: just compute a set

I 0 such that ` c ' I 0

O c using eqobs_ in and check whetherI 0 � I , or equivalently,
compute a setO0 such that ` c ' I

O0 c using eqobs_ out and check whetherO � O0.
CertiCrypt provides as well a (sound, but incomplete) relational weakest pre-

condition calculus that can be used to automate proofs of program invariants; it
deals with judgments of the form

` c1 � c2 : 	 ) = O ^ �

and requires that the programs have (almost) the same control-�ow structure.

3.2 Bridging Steps

CertiCryptprovides a powerful set of tactics and algebraic equivalences to automate
bridging steps in proofs. Most tactics rely on an implementation of a certi�ed opti-
mizer for pWhile . Algebraic equivalences are provided as lemmas that followfrom
algebraic properties of the interpretation of language constructs.

3.2.1 Certi�ed Program Transformations

We automate several transformations that consist in applying compiler optimiza-
tions. More precisely, we provide support for a rich set of transformations based
on dependency and data�ow analyses, and for inlining procedure calls in programs.
Each transformation is implemented as a function inCertiCrypt that performs the
transformation itself, together with a rule that proves its correctness and a tactic
that applies the rule backwards.

Transformations based on dependencies

The functions eqobs_ in and eqobs_ out and the relational Hoare logic presented in
Section 3.1 provide the foundations to support transformations such as dead code
elimination and code reordering.

We write and prove the correctness of a functioncontext that strips o� two
programs c1 and c2 their maximal common context relative to sets I and O of
input and output variables. The correctness ofcontext is expressed by the following
rule

context(I; c1; c2; O) = ( I 0; c0
1; c0

2; O0) ` c0
1 ' I 0

O0 c0
2

` c1 ' I
O c2

The tactic eqobs_ctxt applies this rule backwards. Using the same idea, we imple-
ment tactics that strip o� two programs only their common pre �x ( eqobs_hd) or
su�x ( eqobs_tl ).
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We provide a tactic (swap) that given two programs tries to hoist their common
instructions to obtain a maximal common pre�x 2, which can then be eliminated
using the above tactics. Its correctness is based on the rule

` c1 ' I 1
O1

c1 ` c2 ' I 2
O2

c2 modi�es(c1; O1) modi�es(c2; O2)
O1 \ O2 = ; I 1 \ O2 = ; I 2 \ O1 = ;

` c1; c2 � c2; c1

wheremodi�es(c; X ) is a semantic predicate expressing that programc only modi�es
variables in X . This is formally expressed by

8m: range(�m 0: m = VnX m0) (JcKm)

which ensures that reachable �nal memories coincide with the initial memory except
maybe on variables inX . The tactic swapuses an algorithm that over-approximates
the set of modi�ed variables to decide whether two instructions can be swapped.

We provide a tactic (deadcode) that performs dead code elimination relative
to a set O of output variables. The corresponding transformation behaves more
like an aggressive slicing algorithm: it removes portions of code that do not a�ect
variables in O and performs at the same time branch prediction (substituting c1

for if true then c1 elsec2), branch coalescing (substituting c for if e then c elsec),
and self-assignment elimination. Its correctness relies on the rule

modi�es(c; X ) lossless(c) fv(� ) \ X = ;

` c � skip : � ) �

Optimizations based on data�ow analyses

CertiCrypt has built-in, generic, support for such optimizations: given an abstract
domain D (a semi-lattice) for the analysis, transfer functions for assignment and
branching instructions, and an operator that optimizes expressions in the language,
we construct a certi�ed optimization function optimize : C ! D ! C � D . When
given a commandc and an element� 2 D , this function transforms c into its op-
timized version c0 assuming the validity of � . In addition, it returns an abstract
post-condition � 0 2 D, valid after executing c (or c0). We use these abstract post-
conditions to state the correctness of the optimization andto apply it recursively.
The correctness ofoptimize is proved using a mixture of the techniques of [Benton
2004] and [Bertot et al. 2006; Leroy 2006]: we express the validity of the informa-
tion contained in the analysis domain using a predicatevalid(�; m ) that states the
agreement between the compile time abstract values in� and the run time memory
m. Correctness is expressed in terms of a pRHL judgment:

let (c0; � 0) := optimize(c; � ) in ` c � c0 : � � ) � � 0

2 One could also provide a complementary tactic that hoists in structions to obtain a
maximal common su�x.
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where m1 � � m2
def= m1 = m2 ^ valid(�; m 1). The following useful rule is derived

using [Comp]:

m1 	 m 2 =) valid(�; m 1) optimize(c1; � ) = ( c0
1; � 0) ` c0

1 � c2 : 	 ) �

` c1 � c2 : 	 ) �
[Opt]

Our case studies extensively use instantiations of [Opt] toperform expression prop-
agation (tactic ep). In contrast, we found that common subexpression elimination
is seldom used.

3.2.2 Algebraic Equivalences

Bridging steps frequently make use of algebraic propertiesof language constructs.
The proof of semantic security ofElGamaluses the fact that in a cyclic multiplicative
group, multiplication by a uniformly sampled element acts as a one-time pad:

` x $ Zq; �  gx � � ' f � g y $ Zq; �  gy

In the proof of IND-CCA2 security of OAEP described in Section 6.1 we use the
equivalences

` x $ f 0; 1gk ; y  x � z ' f zg
f x;y;z g y $ f 0; 1gk ; x  y � z

and (for a permutation f ):

` x $ f 0; 1gk � � ; y $ f 0; 1g� ; z  f (xky) ' f zg z $ f 0; 1gk

We show the usefulness of rule [Perm] by proving the �rst of these two equivalences,
known asoptimistic sampling, that we also used in Ÿ1.4.2. De�ne

	 def= zh1i = zh2i
� def= xh1i = xh2i ^ yh1i = yh2i ^ zh1i = zh2i
� def= m1f xh1i � zh1i =yg � m 2f yh2i � zh2i =xg

= xh1i = yh2i � zh2i ^ zh1i = zh2i

By rule [Assn] we have

` y  x � z � x  y � z : � ) � (3.1)

We apply rule [Perm] to prove

` x $ f 0; 1gk � y $ f 0; 1gk : 	 ) � (3.2)

For doing so we must show that for any pair of memoriesm1; m2 that coincide on
z there exists a permutation f on f 0; 1gk such that

8v 2 f 0; 1gk : v = f (v) � m2(z) ^ m1(z) = m2(z)

Take f (v) def= v � m2(z) to be such a permutation. Conclude from (3.1) and (3.2)
by a �nal application of rule [Seq].
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3.2.3 Inter-procedural Code Motion

Game-based proofs commonly include bridging steps consisting in a semantics-
preserving reordering of instructions. When the reordering is intra-procedural, the
tactic swappresented in the previous section generally su�ces to justify the trans-
formation. However, proofs in the random oracle model (see Ÿ1.4.2 for an example
of a random oracle) often include transformations where random values used in-
side oracles are sampled beforehand, or conversely, where sampling a random value
at some point in a game is deferred to a later point, possibly in a di�erent proce-
dure. The former type of transformation, called eager sampling, is useful for moving
random choices upfront: a systematic application of eager sampling transforms a
probabilistic game G that samples a �xed number of values into a semantically
equivalent gameS; G0, whereS samples the values that might be needed inG, and
G0 is a completely deterministic program to the exception of adversaries that may
still make their own random choices.3 The dual transformation, called lazy sam-
pling, can be used to postpone sampling random values until they are actually used
for the �rst time�thus, one readily knows the exact distribut ion of these values
by reasoning locally, without the need to maintain and reason about probabilistic
invariants. In this section, we present a general method to prove the correctness of
inter-procedural code motion. The method is based on a logicfor swapping state-
ments that generalizes the earlier lemma reported in [Barthe et al. 2009c].

A logic for swapping statements

The primary tool for performing eager/lazy sampling is an extension of the rela-
tional Hoare logic with rules for swapping statements. As the goal is to move code
across procedures, it is essential that the logic considerstwo potentially di�erent
environments E and E 0. The logic deals with judgments of the form

` E; (c; S) � E 0; (S; c0) : 	 ) �

In most cases, the logic will be applied with S being a sequence of (guarded)
sampling statements; however, we do not constrainS and merely require that it
satis�es three basic properties for some sets of variablesX and I :

modi�es(E; S; X ) modi�es(E 0; S; X ) ` E; S ' I [ X
X E 0; S

Some rules of the logic are given in Figure 3.2; for the sake ofreadability all rules
are specialized to� , although we formalized more general versions of the rules,e.g.
for conditional statements,

` E; (c1; S) � E 0; (S; c0
1) : P ^ eh1i ) Q P =) eh1i = e0h2i

` E; (c2; S) � E 0; (S; c0
2) : P ^ : eh1i ) Q fv(e0) \ X = ;

` E; (if e then c1 elsec2; S) � E 0; (S; if e0 then c0
1 elsec0

2) : P ) Q
[S-Cond]

3 Making adversaries deterministic is the goal of the coin �xing technique, as described
by Bellare and Rogaway [2006].
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x 62I [ X fv(e) \ X = ;

` E; (x  e; S) � E 0; (S; x  e)
[S-Assn]

x 62I [ X fv(d) \ X = ;

` E; (x $ d; S) � E 0; (S; x $ d)
[S-Rnd]

` E; (c1 ; S) � E 0; (S; c0
1) ` E; (c2 ; S) � E 0; (S; c0

2)

` E; (c1 ; c2 ; S) � E 0; (S; c0
1 ; c0

2)
[S-Seq]

` E; (c1 ; S) � E 0; (S; c0
1) ` E; (c2 ; S) � E 0; (S; c0

2) fv(e) \ X = ;

` E; (if e then c1 elsec2 ; S) � E 0; (S; if e then c0
1 elsec0

2)
[S-Cond]

` E; (c; S) � E 0; (S; c0) fv(e) \ X = ;

` E; (while e do c; S) � E 0; (S; while e do c0)
[S-While]

` E; (f: body; S) � E 0; (S; f: body) E (f ):args= E 0(f ):args E (f ):re = E 0(f ):re
fv(E (f ):re) \ X = ; x 62I [ X fv(e) \ X = ;

` E; (x  f (e); S) � E 0; (S; x  f (e))
[S-Call]

` wf A X \ (RW [ R ) = ; I \ RW = ; 8 f 62 O: E (f ) = E 0(f )
8f 2 O : E (f ):args= E 0(f ):args^ E (f ):re = E 0(f ):re ^

` E; (f: body; S) � E 0; (S; f: body)

` E; (x  A (e); S) � E 0; (S; x  A (e))
[S-Adv]

Fig. 3.2. Selected rules of a logic for swapping statements.

An application

Consider the gamesGlazy and Geager in Figure 3.3. Both games de�ne an oracle

Game Glazy :
L  nil; b  A ()

Oracle Olazy (x) :
if x =2 dom(L ) then

y $ f 0; 1g` ;
L  (x; y ) :: L

elsey  L [x]
return y

Game Geager :
L  nil; ŷ $ f 0; 1g` ; b  A ()

Oracle Oeager (x) :
if x =2 dom(L ) then

if x = 0 k then y  ŷ elsey $ f 0; 1g` ;
L  (x; y ) :: L

elsey  L [x]
return y

Fig. 3.3. An example of eager sampling justi�ed by inter-procedural c ode motion.

O : f 0; 1gk ! f 0; 1g` . While in game Glazy the oracle is implemented as a typical
random oracle that chooses its answers on demand, inGeager we use a fresh variable
ŷ to �x in advance the response to a query of the form0k . We can prove that
both games are perfectly indistinguishable from the point of view of an adversary
A (who cannot write L ). De�ne

c def= b  A () S def= if 0k 62dom(L ) then ŷ $ f 0; 1g` elseŷ  L [0k ]
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and take I = f L g, X = f ŷg. We introduce an intermediate game using rule [Trans],

` Glazy ' V
f bg E lazy ; (L  nil; c; S) ` E lazy ; (L  nil; c; S) ' V

f bg Geager

` Glazy ' V
f bg Geager

[Trans]

We prove the premise on the left by eliminating S as dead code, since it does not
modify variable b. To prove the other premise, we introduce an intermediate game
(Eeager; (L  nil; S; c)) . Its equivalence toGeager is direct by propagating the initial
assignment to L to the condition in S and then simplifying the conditional to its
�rst branch. Its equivalence to (E lazy ; (L  nil; c; S)) is justi�ed by appealing to
rule [S-Adv],

` L  nil � L  nil
[Re�]

` E lazy; (Olazy; S) � Eeager; (S; Oeager)

` E lazy; (c; S) � Eeager; (S; c)
[S-Adv]

` E lazy ; (L  nil; c; S) ' V
f bg Eeager; (L  nil; S; c)

[Seq]

We are thus left to show

` E lazy; (Olazy:body; S) � Eeager; (S; Oeager:body)

The proof of this latter judgment starts by an application of the generalized rule
for conditionals of the logic for swapping statements. Let

e = e0 = x =2 dom(L )
c1 = y $ f 0; 1g` ; L  (x; y) :: L
c0

1 = ( if x = 0 k then y  ŷ elsey $ f 0; 1g` ); L  (x; y) :: L
c2 = c0

2 = y  L [x]

There are two non-trivial proof obligations:

1. ` c2; S � S; c0
2 : = V ^ (x 2 dom(L ))h1i ) = V

This corresponds to showing that the code in theelsebranch in the conditional
of each implementation ofO commutes with S, and follows from [S-Assn];

2. ` c1; S � S; c0
1 : = V ^ (x =2 dom(L ))h1i ) = V

By case analysis onx = 0 k :
a) If x = 0 k , we can invoke certi�ed program transformations�using the p re-

condition that x =2 dom(L )�to simplify the goal to the following easily
provable form:

` y $ f 0; 1g` ; L  (x; y) :: L ; ŷ  y � ŷ $ f 0; 1g` ; y  ŷ ; L  (x; y) :: L

b) Otherwise, we do a further case analysis on0k 2 dom(L )
i. If 0k 2 dom(L ), we have to prove that ` c1; ŷ  L [0k ] � ŷ  L [0k ]; c1

which is trivial;
ii. Otherwise, the goal simpli�es to ` c1; ŷ $ f 0; 1g` � ŷ $ f 0; 1g` ; c1

which is also trivial. ut
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3.3 Reasoning about Failure Events

One common technique to justify a lossy transformation G; A ! G0; A, where
Pr [G : A] 6= Pr [ G0 : A] is based on what cryptographers callfailure events. This
technique relies on afundamental lemma that allows to bound the di�erence in
the probability of an event in two games: one identi�es a failure event and argues
that both games behave identically until failure occurs. One can then bound the
di�erence in probability of another event by the probabilit y of failure in either game.
Consider for example the following two program snippets andtheir instrumented
versions:

s def= if e then c1; c elsec2 sbad
def= if e then c1; bad  true; c elsec2

s0 def= if e then c1; c0 elsec2 s0
bad

def= if e then c1; bad  true; c0 elsec2

If we ignore variable bad , s and sbad , and s0 and s0
bad , respectively, are observa-

tionally equivalent. Moreover, sbad and s0
bad behave identically unlessbad is set.

Thus, the di�erence of the probability of an event A in a game G containing the
program fragment s and a gameG0 containing instead s0 can be bounded by the
probability of bad being set in either G or G0.

Lemma 3.3 (Fundamental Lemma). Let G1; G2 be two games and letA; B ,
and F be events. IfPr [G1 : A ^ : F ] = Pr [ G2 : B ^ : F ], then

jPr [G1 : A] � Pr [G2 : B ] j � max(Pr [G1 : F ] ; Pr [G2 : F ])

Proof.

jPr [G1 : A] � Pr [G2 : B ] j
= jPr [G1 : A ^ F ] + Pr [ G1 : A ^ : F ] � Pr [G2 : B ^ F ] � Pr [G2 : B ^ : F ] j
= jPr [G1 : A ^ F ] � Pr [G2 : B ^ F ] j
� max(Pr [G1 : A ^ F ] ; Pr [G2 : B ^ F ])
� max(Pr [G1 : F ] ; Pr [G2 : F ])

ut

To apply this lemma, we developed a syntactic criterion to discharge its hypothesis
for the case whereA = B and F = bad . The hypothesis can be automatically
established by inspecting the code of both games: it holds iftheir code di�ers
only after program points setting the �ag bad to true and bad is never reset to
falseafterwards. Note also that if both games terminate with probability 1, then
Pr [G1 : bad ] = Pr [ G2 : bad ], and that if, for instance, only game G2 terminates
with probability 1, it must be the case that Pr [G1 : bad ] � Pr [G2 : bad ].

3.3.1 A Logic for Bounding the Probability of Events

Many steps in game-based proofs require to provide an upper bound for the measure
of some function g after the execution of a commandc (throughout this section,
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we assume a �xed environmentE that we omit from the presentation). This is
typically the case when applying the Fundamental Lemma presented in the previous
section: we need to bound the probability of the failure event bad (equivalently,
the expected value of its characteristic function 1bad ). A function f is an upper
bound of (�m: JcKm g) when

� JcKg � f def= 8m: JcKm g � f m

Figure 3.4 gathers some rules for proving the validity of such triples. The rule
for adversary calls assumes thatf depends only on variables that the adversary
cannot modify directly (but may modify indirectly through o racle calls, of course).
The correctness of this rule is proved using the induction principle for well-formed
adversaries together with the rest of the rules of the logic.

` JskipKf � f
f = �m: g (mf JeKm=xg)

` Jx  eKg � f

f = �m: JdKm (�v: g (mf v=xg))

` Jx $ dKg � f

` Jc1Kg � f Jc2Kh � g

` Jc1 ; c2Kh � f

` Jc1Kg � f Jc2Kg � f

` Jif e then c1 elsec2Kg � f

` JcKf � f

` Jwhile e do cKf � f

` g � g0 JcKg0 � f 0 f 0 � f

` JcKg � f

` Jp:bodyKg � f f = X f g = Y g x 62(X [ Y )

` Jx  p(e)Kg � f

` wf A 8 p 2 O : ` Jp:bodyKf � f f = X f X \ (f xg [ RW ) = ;

` Jx  A (e)Kf � f

f = I f ` c ' I
O c0 g = O g ` Jc0Kg � f

` JcKg � f

Fig. 3.4. Selected rules of a logic for bounding the probability of events.

The rules bear some similarity with the rules of (standard) Hoare logic. How-
ever, there are some subtle di�erences. For example, the premises of the rules for
branching statements do not consider guards. The rule

` Jc1Kg � f j e ` Jc2Kg � f j: e

` Jif e then c1 elsec2Kg � f

where f j e is de�ned as (�m: if JeKm then f (m) else 0)can be derived from the rule
for conditionals in the �gure by two simple applications of t he �rule of consequence�.
Moreover, the rule for conditional statements (and its variant above) is incomplete:
consider a statement of the formJif true then c1 elsec2Kg � f such that Jc1Kg � f
is valid, but not Jc2Kg � f ; the triple Jif true then c1 elsec2Kg � f is valid, but to
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derive it one needs to resort to observational equivalence.More general rules exist,
but we have not formalized them since we did not need them in our proofs.4

Digression

The di�erences between the above triples and those of Hoare logic are inherent to
their de�nition, which is tailored to establish upper bound s for the probability of
events. Nevertheless, the validity of a Hoare triplef Pg c f Qg (in which pre- and
post-conditions are Boolean-valued predicates) is equivalent to the validity of the
triple JcK1: Q � 1: P . We can consider dual triples of the formJcKg � f whose
validity is de�ned as:

� JcKg � f def= 8m: JcKm g � f m

This allows to express termination of a program asJcK1 � 1 and admits an em-
bedding of Hoare triples, mappingf Pg c f Qg to JcK1Q � 1P . However, this em-
bedding does not preserve validity for non-terminating programs under the partial
correctness interpretation. Consider a programc that never terminates: we have
f trueg c f falseg, but clearly not JcK1false � 1.

3.3.2 Automation

In most applications of Lemma 3.3, failure can only be triggered by oracle calls.
Typically, the �ag bad that signals failure is set in the code of an oracle for which
an upper bound for the number of queries made by the adversaryis known. The
following lemma provides a general method for bounding the probability of failure
under such circumstances.

Lemma 3.4 (Failure Event Lemma). Consider an eventF and a gameG that
gives adversaries access to an oracleO. Let cntr : ENat , h : N ! [0; 1] be such that
cntr and F do not depend on variables that can be written outsideO, and for any
initial memory m,

: F (m) =) Pr [O:body; m : F ] � h(JcntrKm)

and
range(JO:bodyKm) ( �m 0: JcntrKm < JcntrKm0) _
range(JO:bodyKm) ( �m 0: JcntrKm = JcntrKm0^ F m0 = F m)

Then, for any initial memory m satisfying : F (m) and JcntrKm = 0 ,

Pr [G; m : F ^ cntr � q] �
q� 1X

i =0

h(i )

4 More generally, it seems possible to make the logic complete, at the cost of considering
more complex statements with pre-conditions on memories.
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Proof. De�ne f : M ! [0; 1] as follows

f (m) def=

8
><

>:

0 if JcntrKm > q

1F (m) + 1: F (m)
q� 1X

i = JcntrKm

h(i ) if JcntrKm � q

We showJGKf � f by structural induction on the code of G using the rules of the
logic presented in the previous section. We �rst prove that O satis�es the triple
JO:bodyKf � f . We must show that for every m, JO:bodyKm f � f (m). This is
trivial when cntr is not incremented, because we have

JO:bodyKm f = f (m) (JO:bodyKm 1) � f (m)

When cntr is incremented and JcntrK m � q, this is trivial too, because the left
hand side becomes 0. We are left with the case whereO:body increments cntr and
JcntrKm < q . If F (m), the right hand side is equal to 1 and the inequality holds.
Otherwise, we have from the hypotheses that

JO:bodyKm f � JO:bodyKm

0

@�m 0:1F (m0) + 1: F (m0)
q� 1X

i = JcntrKm 0

h(i )

1

A

� Pr [O:body; m : F ] + Pr [ O:body; m : : F ]
q� 1X

i = JcntrKm +1

h(i )

� h(JcntrKm) +
q� 1X

i = JcntrKm +1

h(i )

=
q� 1X

i = JcntrKm

h(i ) = f (m)

Using the rules in Figure 3.4, we can then extend this result to adversary calls and
to the rest of the game, showing thatJGKf � f .

Finally, let m be a memory such that : F (m) and JcntrK m = 0 . It follows
immediately from JGKf � f that

Pr [G; m : F ^ cntr � q] � JGKm f � f (m) =
q� 1X

i =0

h(i ) ut

When failure is de�ned as the probability of a �ag bad being set by an oracle
and the number of queries the adversary makes to this oracle is upper bounded
by q, the above lemma can be used to bound the probability of failure by taking
F = bad and de�ning h suitably. In most practical applications the probability
of an oracle call raising failure is history-independent and hence h is a constant
function. The proof of Lemma 4.3 given in Section 4.3.2 is an exception for which
the full generality of the lemma is needed.



4
The PRP/PRF Switching Lemma

Cryptographic systems are generally built incrementally by combining basic
primitives with the goal of achieving a higher level security goal. Rather than

designing a system for a particular choice of a primitive, one designs the system
assuming a generic and simpli�ed model of the primitive. Thesecurity of the whole
system is then analyzed under the assumption that this modelbehaves in an ideal
way. Since in practice the construction that implements theprimitive will de�nitely
deviate from this ideal behavior, the actual security of thesystem depends on how
wide the gap between the idealized and the actual behavior is. Pseudorandom func-
tions (PRF) and pseudorandom permutations (PRP) are two idealized primitives
that are used to model blockciphers and thus play a central role in the design of
symmetric-key systems. Although the most natural assumption to make about a
blockcipher is that it behaves as a pseudorandom permutation, most commonly the
security of a system based on a blockcipher is analyzed by replacing the blockci-
pher with a perfectly random function. The PRP/PRF switchin g lemma is used
to �ll the gap: given a bound for the security of a blockcipher as a pseudorandom
permutation, it gives a bound for its security as a pseudorandom function.

In this Chapter we will formally de�ne the notions of pseudorandom function
and pseudorandom permutation and their security, and we will overview two di�er-
ent game-based proofs of the PRP/PRF switching lemma. Both use the Fundamen-
tal Lemma of game-playing (Lemma 3.3) to bound the advantageof an adversary
by the probability of a failure event, but each proof bounds the probability of fail-
ure using a di�erent technique. We �rst present a proof that u ses the principle of
eager sampling so that all random choices are done up front and the probability is
directly computable. We then present a signi�cantly more compact proof that uses
Lemma 3.4 (see Ÿ3.3.2) to bound the probability of failure.

57
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4.1 Pseudorandom Functions

A pseudorandom function is a key-indexed family of functions f f k j k 2 K g with
the property that an instance selected at random according to some distribution on
K is computationally indistinguishable from a perfectly random function. Unless
otherwise said we will consider that the distribution on K that makes this property
hold is the uniform distribution.

Consider an adversary who has only blackbox access to an oracle and is put
in either of two scenarios: one where the oracle is a random instance of a function
drawn from a family of pseudorandom functions, and other where the oracle is a
perfectly random function. This adversary should only be able to tell apart both
scenarios with a small probability. We can de�ne this formally using games.

De�nition 4.1 (PRF-advantage). Let f f k : A ! B j k 2 K g be a pseudorandom
function family, and A an adversary with blackbox access to an oracleO as in the
following two games:

Game GPRF :
k $ K ; b  A ()

Oracle O(x) :
return f k (x)

Game GRF :
L  nil; b  A ()

Oracle O(x) :
if x 62dom(L ) then

y $ B ;
L  (x; y ) :: L

return L [x]

The PRF-advantage ofA against f is de�ned as

Adv A
PRFf

def
= jPr [GPRF : b = 1] � Pr [GRF : b = 1] j

The concept of pseudorandom function was �rst introduced by Goldreich, Gold-
wasser, and Micali [1986]. Rather than considering a singlefamily of key-indexed
functions, they consider a collection of families parametrized by a security parame-
ter � . In this asymptotic setting, a pseudorandom function is secure if all adversaries
that execute in polynomial-time on � have a negligible PRF-advantage (as a func-
tion of � ). In contrast, in the setting of exact security there is no absolute notion of
security for pseudorandom functions. The above de�nition only associates to each
adversaryA a real number, its PRF-advantage. In practice one considersall adver-
saries consuming no more than a certain amount of computational resources, and
gives an upper bound for their PRF-advantage.

4.2 Pseudorandom Permutations

A pseudorandom permutation is key-indexed family of permutations f f k j k 2 K g
on A such that a permutation randomly drawn from the family is computationally
indistinguishable from a permutation drawn uniformly from the set of all permuta-
tions on A. Again, we de�ne this notion formally using games.
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De�nition 4.2 (PRP-advantage). Let f f k : A ! A j k 2 K g be a pseudorandom
permutation family, and A an adversary with blackbox access to an oracleO as in
the following two games:

Game GPRP :
k $ K ; b  A ()

Oracle O(x) :
return f k (x)

Game GRP :
L  nil; b  A ()

Oracle O(x) :
if x 62dom(L ) then

y $ A n ran(L );
L  (x; y ) :: L

return L [x]

where the instruction y $ A nran(L ) samples uniformly an element ofA that is not
in the range of the association listL , thus ensuring that oracleO in GRP implements
an injective�and therefore bijective�function. The PRP-a dvantage ofA against
f is de�ned as

Adv A
PRPf

def
= jPr [GPRP : b = 1] � Pr [GRP : b = 1] j

The notion of pseudorandom permutation is due to Luby and Racko� [1988], who
also observe that the notions of pseudorandom function and permutation are no
di�erent in an asymptotic setting, and show how to construct a pseudorandom
permutation from a pseudorandom function.

4.3 The PRP/PRF Switching Lemma

We already observed that every pseudorandom permutation family is also a pseudo-
random function family. But how well does a pseudorandom permutation perform
as a pseudorandom function? Let us �rst consider the simplerproblem of compar-
ing a perfectly random function to a random permutation. Suppose you give to
an adversary blackbox access to an oracle implementing either a random function
or a random permutation, and you ask it to tell you which is the case. For the
sake of concreteness let us assume the domain of the permutation (and the domain
and range of the function) is f 0; 1g` . Due to the birthday problem, no matter the
strategy the adversary follows, after roughly 2`= 2 queries to the oracle it will be
able to tell in which scenario it is with a high probability. I f the oracle is a random
function, a collision is almost sure to occur, whereas it could not occur when the
oracle is a random permutation. The birthday problem gives us a lower bound for
the advantage of an adversary in distinguishing a random function from a random
permutation. The following lemma gives an upper bound.

Lemma 4.3 (PRP/PRF switching lemma). Let A be an adversary with black-
box access to an oracleO implementing either a random permutation on f 0; 1g` as
in game GRP or a random function from f 0; 1g` to f 0; 1g` as in gameGRF. Suppose,
in addition, that A makes at mostq > 0 queries to oracleO. Then,
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jPr [GRP : b = 1] � Pr [GRF : b = 1] j �
q(q � 1)

2` +1 (4.1)

We overview two di�erent machine-checked proofs of the PRP/PRF switching
lemma that exploit the code-based techniques presented in earlier sections. Both
proofs use the Fundamental Lemma to bound the advantage of the adversary by
the probability of a failure event. The �rst proof uses the eager sampling technique
of Section 3.2.3 to bound the probability of failure, whereas the second one relies
on Lemma 3.4 of Section 3.3.2. We begin by introducing in Figure 4.1 annotated
versionsGbad

RP and Gbad
RF of the gamesGRP and GRF. These annotated games set a

�ag bad whenever the oracle corresponding to a random function would return a
value colliding with a response to a previous query, but are otherwise semantically
equivalent to the original games. The annotated games are syntactically identical
until the point where bad is set, so we can appeal to Lemma 3.3 to bound the
di�erence in the probability of b being equal to 1 in the original games:

jPr [GRP : b = 1] � Pr [GRF : b = 1] j � Pr
�
Gbad

RF : bad
�

Game Gbad
RP :

L  nil; b  A ()

Oracle O(x) :
if x 62dom(L ) then

y $ f 0; 1g` ;
if y 2 ran(L ) then

bad  true;
y $ f 0; 1g` n ran(L )

L  (x; y ) :: L
return L [x]

Game Gbad
RF :

L  nil; b  A ()

Oracle O(x) :
if x 62dom(L ) then

y $ f 0; 1g` ;
if y 2 ran(L ) then

bad  true
L  (x; y ) :: L

return L [x]

Game Geager
RF :

L  nil; S; b  A ()

Oracle O(x) :
if x 62dom(L ) then

if 0 < jY j then
y  hd(Y );
Y  tl (Y )

elsey $ f 0; 1g`

L  (x; y ) :: L
return L [x]

S def= Y  nil; while jY j < q do
�
y $ f 0; 1g` ; Y  y :: Y

�

Fig. 4.1. Games used in the proofs of the PRP/PRF Switching Lemma.

4.3.1 A Proof Based on Eager Sampling

We make a �rst remark: the probability of bad being set in gameGbad
RF is bounded

by the probability of having a collision in ran(L ) at the end of the game. Let us
write this latter event as col(L ),

col(L ) def= 9x1; x2 2 dom(L ): x1 6= x2 ^ L [x1] = L [x2]

We prove that
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` Gbad
RF � GRF : true ) bad h1i =) col(L )h2i

Thus,
Pr

�
Gbad

RF : bad
�

� Pr [GRF : col(L )] (4.2)

Using the logic for swapping statements, we then modify the oracle in GRF so that
the responses to the �rst q queries are instead chosen at the beginning of the game
and stored in a list Y , thus obtaining the equivalent eager versionGeager

RF shown in
Figure 4.1; each time a query is made, the oracle pops a value from list Y and gives
it back to the adversary as the response. Since the initialization code S terminates
and does not modifyL , we can conclude that

Pr [GRF : col(L )] = Pr [ GRF; S : col(L )] = Pr [ Geager
RF : col(L )]

We prove using the relational Hoare logic that having a collision in the range ofL
at the end of this last game is bounded by the probability of having a collision in
Y immediately after executing S. We conclude that the bound in (4.1) holds by
analyzing the loop in S.

Observe that if there are no collisions inY in a memory m, we can prove by
induction on (q � j Y j) that the probability of sampling a colliding value in the
remaining loop iterations is

Pr [S; m : 9i; j 2 N: i < j < q ^ Y [i ] = Y [j ]] =
q� 1X

i = jY j

i
2`

We thus have,

Pr [Geager
RF : col(L )] � Pr [S; mf nil=Y g : 9i; j 2 N: i < j < q ^ Y [i ] = Y [j ]]

=
q(q � 1)

2` +1

ut

4.3.2 A Proof Based on the Failure Event Lemma

The bound in (4.1) follows from a direct application of Lemma 3.4. It su�ces to
take F = bad , h(i ) = i 2� ` , and cntr = jL j. If bad is initially set to falsein memory
m, we have

Pr
�
Gbad

RF ; m : bad
�

= Pr [ b  A () ; mf nil=L g: bad ^ j L j � q] �
q� 1X

i =0

h(i ) =
q(q � 1)

2` +1

The �rst equation holds becauseA does not make more thanq queries to O. The
inequality is obtained from Lemma 3.4; we use the logic of Section 3.3.1 to bound
the probability of bad being set in one call to the oracle byh(cntr).
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4.3.3 Comparison of Both Proofs

The proof of the PRP/PRF switching lemma that bounds the prob ability of failure
using Lemma 3.4 presented in Section 4.3.2 is considerably shorter compared to the
one presented in Section 4.3.1, that uses the principle of eager sampling to reduce
the problem of bounding the probability of failure to local r easoning about a loop.
The former proof takes just about 100 lines ofCoq, compared to the 400 lines that
takes the latter. Both proofs are signi�cantly more compact than the 900-lines proof
reported in Barthe et al. [2009c]. That proof used an earliermechanization of the
eager sampling technique that only allowed to �x the value of one response of the
oracle at a time. Thus, in order to �x in advance the response to all the q queries
that could be made by the adversary, an induction argument was necessary.

4.4 Pseudorandom Permutations as Pseudorandom
Functions

In view of Lemma 4.3, we can now answer our original question:how well does a
pseudorandom permutation perform as a pseudorandom function?

Let f f k j k 2 K g be a pseudorandom permutation family onf 0; 1g` and let A
be an adversary that makes at mostq > 0 queries to its oracle. The PRF-advantage
of A is

Adv A
PRFf

= jPr [GPRF : b = 1] � Pr [GRF : b = 1] j

= jPr [GPRP : b = 1] � Pr [GRP : b = 1] + Pr [ GRP : b = 1] � Pr [GRF : b = 1] j

� j Pr [GPRP : b = 1] � Pr [GRP : b = 1] j + jPr [GRP : b = 1] � Pr [GRF : b = 1] j

� Adv A
PRPf

+
q(q � 1)

2` +1

Consider this bound in an asymptotic setting, and assumè is linearly propor-
tional to the security parameter � . Every polynomial-time adversary can make only
a polynomial number of queries to its oracle, soq is polynomial on the security
parameter, and the term on the right hand side of the last inequality is negligi-
ble on � if f is secure as a pseudorandom permutation. Hence,f is secure as a
pseudorandom function wheneverf is secure as a pseudorandom permutation.

We already observed that the construction of Luby and Racko� [1988] provides
a means to build a pseudorandom permutation from a pseudorandom function;
many other authors have studied variations of this construction. In contrast, the
reverse direction has been historically much less studied.Although it follows from
the PRP/PRF switching lemma that in a complexity-theoretic al setting, a pseu-
dorandom permutation is a pseudorandom function, there are constructions that
achieve better security at a low e�ciency cost [Hall et al. 1998].
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4.5 Discussion

Despite the apparent simplicity of the PRP/PRF switching le mma, some purported
proofs in the literature contain a subtle error in reasoningabout conditional prob-
abilities (cf. Impagliazzo and Rudich [1989]). Let us brie�y report the argument in
those proofs.

Intuitive proof.

Let collisionbe the event that adversary A gets the same answer to two di�erent
queries when interacting with a random function. Since a random permutation
behaves the same as a random function when no collisions are observed, we have
that

Pr [GRP : b = 1] = Pr [ GRF : b = 1 j : collision] (4.3)

Let x = Pr [ GRF : b = 1 j : collision], y = Pr [ GRF : b = 1 j collision]. Then,

jPr [GRP : b = 1] � Pr [GRF : b = 1] j

= jx � (x Pr [GRF : : collision] + y Pr [GRF : collision])j

= jx (1 � Pr [GRF : : collision]) � y Pr [GRF : collision])j

= jx � yj Pr [GRF : collision]

Since0 � x; y � 1,

jPr [GRP : b = 1] � Pr [GRF : b = 1] j � Pr [GRF : collision]

Since the adversary makes at mostq queries to the oracle,

Pr [GRF : collision] �
q(q � 1)

2` +1

and the bound (4.1) follows. ut
The reader may be wondering where is the error in the above argument. The

problem is that equation (4.3) might not hold, no matter how appealing the intuitive
justi�cation we gave can look. We can actually illustrate th is with a counterexample
for ` = 1 , by showing a particular adversary for which the equation does not hold:

Adversary A 1() :
y  O (0);
if y = 0 then return1
else

y  O (1);
if y = 1 then return1 else return0

Let us analyze how this adversary fares in each game with respect to equation (4.3).
We can better depict the behavior of the adversary using a tree. The values in leaves
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represent the bit b the adversary returns in each case whereas the label on the left
of a node indicates the probability of reaching it.

GRF O(0)?

1
2 1

0

O(1)?

1

1
4 0

0

1
4 1

1

GRP O(0)?

1
2 1

0

O(1)?

1

1
2 0

0

0 1

1

It follows that

1
2

= Pr [ GRP : b = 1] 6= Pr [ GRF : b = 1 j : collision] =
2
3

(4.4)

The reason of the discrepancy is that the number of queries made by the adversary
varies depending on the answer it receives from its �rst query.

The same would happen if the number of queries depended on theinternal
random choices ofA . For instance, the following adversary makes either zero or
two queries depending on the result of sampling a fair coin and achieves the same
probabilities in equation (4.4) as the adversary we showed previously:

Adversary A 2() :
a $ f 0; 1g;
if a = 0 then return1
else

y0  O (0); y1  O (1);
if y0 ^ y1 then return1 else return0

GRF

1
2 1

a = 0

O(0); O(1)?

a = 1

1
8 0

0; 0

1
8 0

0; 1

1
8 0

1; 0

1
8 1

1; 1

GRP

1
2 1

a = 0

O(0); O(1)?

a = 1

0 0

0; 0

1
4 0

0; 1

1
4 0

1; 0

0 1

1; 1
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Obviously, the result we proved in the previous section holds for both of the
above adversaries. We can compute the actual advantage theyachieve and check
that the bound in Equation (4.1) holds:

�
�
�Pr

h
GA 1

RP : b = 1
i

� Pr
h
GA 1

RF : b = 1
i �
�
� =

�
�
�
�
1
2

�
3
4

�
�
�
� =

1
4

�
q(q � 1)

2` +1 =
1
2

�
�
�Pr

h
GA 2

RP : b = 1
i

� Pr
h
GA 2

RF : b = 1
i �
�
� =

�
�
�
�
1
2

�
5
8

�
�
�
� =

1
8

�
q(q � 1)

2` +1 =
1
2

Indeed, both adversaries make at mostq = 2 queries and the bound holds. The
following adversaryA 3 mounting a birthday attack with q = 2 achieves the maximal
value of 1=2:

Adversary A 3() :
y1  O (0);
y2  O (1);
if y1 6= y2 then return1 else return0

�
�
�Pr

h
GA 3

RP : b = 1
i

� Pr
h
GA 3

RF : b = 1
i �
�
� =

�
�
�
�1 �

1
2

�
�
�
� =

1
2

4.6 Related Work

The standard proof of the PRP/PRF switching lemma is due to Impagliazzo and
Rudich [1989,Theorem 5.1]. The above observation about theerror in the reasoning
in the standard proof of the lemma and the �rst counterexample we showed are due
to Bellare and Rogaway [2006].

Bellare and Rogaway [2006,Lemma 1] give a game-based proof of the PRP/PRF
switching lemma. Their proof is similar to ours, but they make the additional
assumption that the adversary never asks an oracle query twice. Just as in the
proof we presented, they use the Fundamental Lemma of game-playing to bound
the di�erence in the probability of the adversary outputtin g 1 when interacting with
either a random permutation or a random function. However, the justi�cation of
the bound on the probability of the bad �ag being set when the adversary interacts
with a random function remains informal. The same authors give also a proof of the
PRP/PRF switching lemma that does not use games, under the assumption that
the adversary is deterministic and makes exactlyq di�erent queries to its oracle.
We note that the assumption of the adversary being deterministic is without loss of
generality only if it is computationally unbounded, and therefore the argument does
not hold in an asymptotic setting where the adversary must execute in polynomial-
time.

Shoup [2004,Section 5.1] gives a game-based proof of the PRP/PRF switching
lemma under the assumption that the adversary makes exactlyq distinct queries to
its oracle. In the games he considers, the challenger acts asintermediary between
the oracle and the adversary. Rather than the adversary calling the oracle at its
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discretion, it is the challenger that calls the adversary toget the next query; it then
asks the query itself to the oracle and gives the response back the adversary in the
next call. There is probably nothing wrong with this formula tion, but we feel that
it imposes unnecessary restrictions on the form of the adversary that do not help
to make the proof more clear.

A�eldt, Tanaka, and Marti [2007] present a formalization of a game-based proof
of the PRP/PRF switching lemma in the Coq proof assistant. What they prove in
reality is a simpli�ed variant that only holds for non-adapt ive and deterministic
adversaries. They formalize adversaries as purely deterministic mathematical func-
tions that take a natural number and return an element in the domain of its oracle
(a query). This implies that the queries the adversary makesdo not depend on
the responses to previous queries or on any random choices. For instance, the two
adversaries we gave in the previous section as counterexamples to the probabilistic
reasoning in the original proof of the PRP/PRF switching lemma are ruled out by
this formulation.



5
Unforgeability of Full-Domain Hash

Signatures

In this chapter we will go through the formalization in CertiCrypt of two di�erent
proofs of security of the Full-Domain Hash (FDH) signature scheme. The FDH

scheme was �rst proposed by Bellare and Rogaway [1996] as an e�cient RSA-based
signature scheme, but is in fact an instance of an earlier construction described by
the same authors in 1993. Here, we will consider this latter,more general construc-
tion, which is based on a family of one-way trapdoor permutations f on a cyclic
group G, and a hash functionH : f 0; 1g� ! G whose range is the full domain off .
The RSA-based scheme is obtained by instantiatingf with the RSA function, and
the hash function with some cryptographic hash function, such as SHA-1 with the
length of its output extended to match that of the RSA modulus.

De�nition 5.1 (Trapdoor permutation). A family of trapdoor permutations
is a triple of algorithms (KG; f; f � 1). For a given value of the security parame-
ter � , the key generatorKG(� ) randomly selects a pair of keys(pk; sk) such that
f (pk; �) is a permutation on its domain and f � 1(sk; �) is its inverse. We say that a
family of trapdoor permutations is one-way if it cannot be inverted in probabilistic
polyonomial-time on a uniformly distributed element in its domain.

De�nition 5.2 (Full-Domain Hash signature scheme). Let (KGf ; f; f � 1) be
a family of trapdoor permutations on cyclic groupsG� and let H be family of hash
functions from bitstrings of arbitrary length onto the domain of the permutations.
The Full-Domain Hash digital signature scheme is composed of the following triple
of algorithms:

KG(� ) def
= (pk; sk)  KG f (� ); return (pk; sk)

Sign(sk; m) def
= return f � 1(sk; H (m))

Verify(pk; m; � ) def= return (f (pk; � ) = H (m))

The key generation algorithm just runs the key generation algorithm of the under-
lying trapdoor permutation obtaining a public keypk, that is used as the veri�cation

67
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key of the scheme, and a secret key (trapdoor)sk used to compute signatures. The
signature of a messagem 2 f 0; 1g� is simply f � 1(sk; H (m)) , the preimage underf
of its digest. To verify a purported signature� on a messagem, it su�ces to check
whether H (m) and f (pk; � ) coincide.

The FDH scheme can be proved secure in the random oracle modelagainst
existential forgery under adaptive chosen-message attacks (see De�nition 2.10 in
Ÿ2.5). This means that if we regard the hash functionH as a truly random function,
then any computationally feasible adversary with access tothe public key and that
can ask for the signature of messages of its choice, succeedsin forging a signature
for a fresh message only with a negligible probability. Thisasymptotic security
statement is desirable, but of limited practical utility be cause it does not give
any hint as to how to choose the scheme parameters to attain a certain degree of
security. A much more useful result would be an exact security statement, a bound
that quanti�es the gap between the security of the scheme andthe intractability of
inverting the trapdoor permutation.

Consider an adversary against the existential unforgeability of FDH that makes
at most qH(� ) and qS(� ) queries to the hash and signing oracles, respectively. In a
code-based setting, such an adversary is regarded as a black-box procedureA run
in the context of the following attack game:

Game GEF :
(pk; sk )  KG ();
L ; S  nil;
(m; � )  A (pk);
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

h $ G; L  (m; h) :: L
return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return f � 1(sk ; h)

This adversary succeeds in forging a FDH signature for a fresh message with prob-
ability

Pr [GEF : h = f (pk; � ) ^ m =2 S]

Note that in the above game the signing oracle makes a hash query each time the
adversary asks for the signature of a message, and an additional hash query is made
at the end as part of the veri�cation of the signature returned by the adversary.
Thus the number of e�ective hash queries made during the whole game is at most
qH + qS + 1 . All this is captured by the following post-condition of GEF,

	 def= jL j � qH + qS + 1 ^ j Sj � qS

This implies in particular that Pr [GEF : A] = Pr [ GEF : A ^ 	 ] for any event A.
In the remainder of this chapter we will show two di�erent way s of constructing

an inverter I that uses the forger A to invert f . These constructions e�ectively
reduce the security of the signature scheme to the intractability of inverting the
underlying trapdoor permutation.
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5.1 The Original Proof

We �rst present a game-based proof of the original result by Bellare and Rogaway
[1993], which provides a security bound that depends on the number of queries the
adversary makes to both, the hash and the signing oracle.

Theorem 5.3 (Original bound). Let A be an adversary mounting a chosen-
message existential forgery attack against FDH that makes atmost qH queries to
the hash oracleH and at most qS queries to the signing oracleSign. SupposeA
succeeds in forging a signature for a fresh message within time t with probability � .
Then, there exists an inverter I that �nds the preimage of an element uniformly
drawn from the range of f with probability � 0 within time t0, where

� 0 � (qH + qS + 1) � 1 � (5.1)

t0 � t + ( qH + qS) O(t f ) (5.2)

and t f is an upper bound for the time needed to compute the image of a group
element under the permutationf .

Proof. The inverter I shown in the context of gameGOW in Figure 5.1 achieves the
probability and time bounds in the statement. It simulates an environment for A
where it replaces the hash and signing oracles with versionsof its own.

Game GOW :
(pk; sk)  KG f ();
y $ G;
x  I (pk; y)

Adversary I (pk; y) :
p̂k  pk;
ŷ  y;
j $ f 0; : : : ; qg;
P ; L  nil;
(m; � )  A (pk);
return �

Oracle H (m) :
if m =2 dom(L ) then

if jL j = j then h  ŷ
elser $ G; h  f (p̂k ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;

return L [m]

Oracle Sign(m) :
h  H (m);
return P [m]

Fig. 5.1. The inverter I in the context of the one-wayness game for the family of trapd oor
permutations (KGf ; f; f � 1).

In order to stand a chance of forging a signature for a fresh messagem, the
adversary A must ask for the hash value ofm by querying oracle H . Otherwise,
the hash of m would be completely random an independent of the adversary's
output, and thus the purported signature � would only be valid with a negligible
probability. The inverter I tries to guess the query where the hash value ofm is
asked for the �rst time. Let q def= qS + qH. The inverter �rst randomly chooses an
index j in f 0; : : : ; qg and then runs the forger intercepting its oracle queries. The
inverter answers to the j -th hash query (we index the queries from 0) with its own



70 Chapter 5. Unforgeability of Full-Domain Hash Signature s

challengey, and to the remaining hash queries with a random element in the range
of f with a known preimage; it stores this preimage in a listP . When the adversary
makes a signing query, the inverter �rst makes the corresponding hash query itself
and then obtains the preimage of the hash value underf from the list P . The
simulation is perfect provided the forger never asks the signature of the message
corresponding to thej -th hash query, because in this case its preimage will not be
in the list P . A su�cient condition for the simulation to be correct is tha t the guess
j be correct (i.e. m = M [j ]), becausem cannot appear in a signing query (it must
be fresh).

We can readily analyze the extra time the inverter spends in simulating the
environment for A in GOW . The only signi�cant overhead is in the simulation of
the hash oracleH . For all but one hash query, the simulated oracle computes the
image underf of some element. The time bound (5.2) follows because the adversary
makes (either directly or indirectly, through the signing oracle) at most qH + qS hash
queries.

To prove that the probability bound in equation (5.1) holds, we will exhibit a
sequence of games relating the probability

� 0 = Pr
�
GOW : x = f � 1(sk; y)

�

of I successfully invertingf on a random challengey, to the probability

� = Pr [ GEF : h = f (pk; � ) ^ m =2 S]

of adversary A forging a signature for a fresh message. For each game, the main
experiment is shown alongside the code of procedures in the environment; code
pieces that change with respect to the previous game in the sequence appear on a
gray background.

We start from the game GEF that encodes the existential forgery attack. In
this initial game, the hash oracle H is implemented as a random oracle whereas
the signing oracle is implemented as speci�ed by the scheme.In order to be able
to encode the freshness condition on the message whose signature is forged, the
signing oracle is instrumented to record the queries it gets.

Game GEF :
(pk; sk )  KG ();
L ; S  nil;
(m; � )  A (pk);
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

h $ G; L  (m; h) :: L
return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return f � 1(sk ; h)

In gameG1 we instrument the hash oracle to keep track of the indices of queries.
We use for this purpose a list M where we store the messages queried to the
hash oracle so far. Note that this is not really necessary because the value ofM
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can be recovered at any given moment from the value ofL . We only make this
instrumentation for convenience and to make the proof cleaner. We also introduce
the guessj that will be used later by the inverter. We sample j uniformly at the end
of the game so that its independence from the output of the adversary is evident.

Game G1 :
(pk; sk )  KG f ();
M  nil;
L ; S  nil;
(m; � )  A (pk);
h  H (m);
j $ f 0; : : : ; qg

Oracle H (m) :
if m 62dom(L ) then

h $ G; L  (m; h) :: L ;
M  m :: M

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return f � 1(sk ; h)

Consider the predicate

� 1
def= jL j = jM j ^ (8m 2 dom(L ): 9i < jM j: m = M [i ])

We prove that
` GEF � G1 : true ) = f L ;S ;pk;m;�;h g ^ � 1h2i (5.3)

Using the tactics wpand eqobs_in we construct the relational procedure informa-
tion for the oracles in the environment of both games. We thenextend it automat-
ically to the adversary A to obtain the information � that we need to prove the
equivalence. The script we use to prove (5.3) is just

deadcode �; eqobs_ctxt � ; wp; ...

The tactic deadcoderemoves the random assignment toj in G1, while eqobs_ctxt
removes the common pre�x and su�x in both games except for the instruction
L  nil because it a�ects the invariant � 1h2i . The intermediate goal after applying
these �rst two tactics is

` L  nil � M ; L  nil : = f pk; sk g ) = f L g ^ � 1h2i

The tactic wpis then used to compute the weakest relational pre-condition of = f L g

^ � 1h2i with respect to the two resulting program fragments; the ellipsis stands for
a straightforward script to prove that this weakest pre-condition holds. GamesGEF

and G1 are thus equivalent onh, pk, � , m, and S, which implies

Pr [GEF : h = f (pk; � ) ^ m =2 S] = Pr [ G1 : h = f (pk; � ) ^ m =2 S] (5.4)

GamesGEF and G1 are also equivalent on all the variables appearing free in	 , so
that 	 is a post-condition of G1 as well. Furthermore, since the game makes a last
hash call for m, m 2 dom(L ) is a post-condition of G1. We have that

	 ^ � 1 ^ m 2 dom(L ) =) 9 i � q: m = M [i ]
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This means that there exists at least one indexi in f 0; : : : ; qg such that m = M [i ].
(In fact, there exists exactly one, but we do not need to provethis.) The probability
of j being one of such indices is at least(q + 1) � 1 and is obviously independent of
the success of the forgery, thus

Pr [G1 : h = f (pk; � ) ^ m =2 S]
q + 1

� Pr [G1 : h = f (pk; � ) ^ m =2 S ^ m = M [j ]] (5.5)

We apply now a semantics preserving transformation. GameG2 eagerly samples
the value ŷ that is given as answer to the j -th hash query, and that will later
become the challenge to the inverter.

Game G2 :
(pk; sk )  KG f ();
ŷ $ G;
j $ f 0; : : : ; qg;
M ; L ; S  nil;
(m; � )  A (pk);
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

if jL j = j then h  ŷ
elseh $ G;
L  (m; h) :: L ;
M  m :: M

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return f � 1(sk ; h)

We obtain
` G1 ' ;

f j ;M ;L ;S ;pk;m;�;h g G2

Therefore,

Pr [G1 : h = f (pk; � ) ^ m =2 S ^ m = M [j ]]
= Pr [ G2 : h = f (pk; � ) ^ m =2 S ^ m = M [j ]]

(5.6)

In the next game we modify the way hash queries are computed. For all but
the j -th query we return the image under f of a uniformly sampled element in its
domain, and we store this element in a listP . This is a local change that does not
modify the distribution of the answers. Indeed, sincef is a permutation we have

` h $ G ' ;
f hg r $ G; h  f (pk ; r )

In preparation for the next transformation, we also introduce a �ag bad to signal
whether the simulation failed, i.e. whether the adversary asked for the signature of
M [j ].
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Game G3 :
(pk ; sk )  KG f ();
ŷ $ G;
j $ f 0; : : : ; qg;
P  nil;
M ; L ; S  nil;
(m; � )  A (pk );
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

if jL j = j then h  ŷ
elser $ G; h  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;
M  m :: M

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
if m = M [j ] then

bad  true;
return f � 1(sk ; h)

else returnf � 1(sk ; h)

We prove the equivalence

` G2 � G3 : true ) = f j ;M ;L ;S ;pk;m;�;h g ^ (M [j ] =2 S =) : bad )h2i

Hence

Pr [G2 : h = f (pk; � ) ^ m =2 S ^ m = M [j ]]
= Pr [ G3 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ]]

(5.7)

In game G4 we modify the signing oracle so that if the signature of the message
M [j ] is ever asked, instead of actually computing the preimage ofits digest using
sk , the signing oracle simply returns the correspondingP -entry. This entry will be
unde�ned, but this poses no problem because as long as the guess j is correct this
piece of code is unreachable.

Game G4 :
(pk ; sk )  KG f ();
ŷ $ G;
j $ f 0; : : : ; qg;
P  nil;
M ; L ; S  nil;
(m; � )  A (pk );
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

if jL j = j then h  ŷ
elser $ G; h  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;
M  m :: M

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
if m = M [j ] then

bad  true;
return P [m]

else returnf � 1(sk ; h)
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Games G3 and G4 di�er only in a portion of code that appears after bad is set,
therefore they are syntactically equal up to the failure event bad . The Fundamental
Lemma gives us

Pr [G3 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ] ^ : bad ]
= Pr [ G4 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ] ^ : bad ]

SinceM [j ] =2 S =) : bad is a post-condition of G3, it does not change anything
if we remove the last term : bad from the event under consideration,

Pr [G3 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ]]
= Pr [ G4 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ] ^ : bad ]
� Pr [G4 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ]]

(5.8)

When answering a signing query for a messagem 6= M [j ], we may obtain the
preimage of its hash value fromP rather than using f � 1, as in gameG5.

Game G5 :
(pk ; sk)  KG f ();
ŷ $ G;
j $ f 0; : : : ; qg;
P ; L  nil;
(m; � )  A (pk );
y  ŷ ;
x  �

Oracle H (m) :
if m 62dom(L ) then

if jL j = j then h  ŷ
elser $ G; h  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L

return L [m]

Oracle Sign(m) :
h  H (m);
return P [m]

De�ne � 4 as

8m 2 dom(L ): m 6= M [j ] =) P [m] = f � 1(sk ; L [m]) ^
(j � j M j =) L [M [j ]] = ŷ )

We use� 4 to prove that the signing oracles in gamesG4 and G5 are equivalent. To
this end we show that

` G4 � G5 : true ) = f ŷ ;j ;L ;m;�;h g ^ � 4h1i

If m = M [j ], then certainly j � j M j when the game �nishes. In this case, post-
condition � 4 implies that h = L [M [j ]] = ŷ , which in turn gives

Pr [G4 : h = f (pk ; � ) ^ m =2 S ^ m = M [j ]] � Pr
�
G5 : f � 1(sk; y) = x

�
(5.9)

We �nally prove that ` G5 ' ;
f sk;x;y g GOW . We need to inline the call to the inverter

I in GOW and usey instead of ŷ in G5. The proof script is straightforward,
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alloc_l ŷ y; sinline_r � I .
eqobs_tl � ; deadcode; eqobs_in.

Using the above equivalence we derive

Pr
�
G5 : f � 1(sk; y) = x

�
= Pr

�
GOW : f � 1(sk; y) = x

�
(5.10)

Putting all the above results together, we conclude

Pr [GEF : h = f (pk; � ) ^ m =2 S]
q + 1

� Pr
�
GOW : f � 1(sk; y) = x

�
(5.11)

ut
A complete proof of asymptotic security follows trivially. Since f is a one-way

permutation family, Pr
�
GOW : f � 1(sk; y) = x

�
is negligible in the security parame-

ter provided I runs in PPT. This is indeed the case, and is proved automatically
in CertiCrypt. The number of queriesq made by the forger to the hash and signing
oracles must necessarily be polynomial on the security parameter � . Since the prod-
uct of a negligible function and a polynomial is still a negligible function, it follows
from (5.11) that the probability of a successful existential forgery is negligible.

5.2 Improved Bound

A tighter security bound for FDH appears in [Coron 2000]; this bound is indepen-
dent of the number of hash queries. This is of much practical signi�cance since
the number of hash values a real-world forger can compute is only limited by the
time and computational resources it invests, whereas the number of signatures it
gets could be limited by the owner of the private key. Once theowner of a key has
used it to sign a certain quantity of messages, he could simply discard that key and
generate a new one.

Theorem 5.4 (Improved bound). Assume the underlying trapdoor permutation
(KGf ; f; f � 1) is homomorphic with respect to the group operation in its domain,
i.e. for every (pk; sk) that might be output byKGf , and every x; y, f (pk; x � y) =
f (pk; x) � f (pk; y). Let A be an adversary against the existential unforgeability
of FDH that makes at most qH and qS queries to the hash and signing oracles
respectively. SupposeA succeeds in forging a signature for a fresh message within
time t with probability � during experiment GEF. Then, there exists an inverter I
that �nds the preimage of an element uniformly drawn from the range of f with
probability � 0 within time t0 during experiment GOW , where

� 0 �
1

qS + 1

�
1 �

1
qS + 1

� qS

� (5.12)

t0 � t + ( qH + qS) O(t f ) (5.13)
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These bounds hold for the inverter shown in Figure 5.2. The inverter �rst samples
q + 1 bits at random, choosing true with probability p and falsewith probability
(1 � p), and stores them in a list T . It answers to the i -th hash query as follows: it
picks uniformly a value r from the domain of f and stores it in a list P , then replies
according to the i -th entry in T : if it is true, answers with y � f (pk; r ) where y is
its challenge, if it is falseanswers with simply f (pk ; r ). In both cases the answers
are indistinguishable from those of a random function. Whenthe adversary asks
for the signature of a messagem, the inverter makes the corresponding hash query
itself and then answers with the m entry in the list P . The simulation is correct
provided the entries in T corresponding to messages appearing in signing queries
are false, because in this case the corresponding entries inP coincide with the
preimage of their hash value. The aim of the inverter is to inject its challenge in as
many hash queries as possible, while at the same time maximizing the probability of
the simulation being correct. The parameterp is left unspeci�ed through the proof
and will be chosen later to �nd the best compromise between these two competing
goals.

Game GOW :
(pk; sk)  KG f ();
y $ G;
x  I (pk; y)

Adversary I (pk; y) :
pk  pk;
ŷ  y;
i  0;
T ; P ; L  nil;
while jT j � q do

b $ true � p false;
T  b :: T

(m; � )  A (pk);
h  H (m);
return � � P [m]� 1

Oracle H (m) :
if m =2 dom(L ) then

r $ G;
if T [i ] = true then

h  ŷ � f (pk ; r )
elseh  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;
i  i + 1

return L [m]

Oracle Sign(m) :
h  H (m);
return P [m]

Fig. 5.2. The inverter I in the context of the one-wayness game for the family of trapd oor
permutations (KGf ; f; f � 1). We use (true � p false) to denote a Bernoulli distribution with
success probability p, i.e. the discrete distribution that takes value true with probability
p and falsewith probability (1 � p).

The success of the inverter is not guaranteed by the sole success of the forger.
It depends on two additional conditions: that the simulatio n is consistent, so that
the forger behaves as expected, and that the forgery can be used to compute the
preimage of the challengey.

Let us analyze �rst the probability of the simulation being c onsistent. The forger
A must not be able to distinguish the simulation from the experiment in GEF. The
forger's view, and in particular the distribution of the answers it gets from the hash
and signing oracles must be the same as in the original experiment. The responses
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of the simulated hash oracle are uniformly distributed, as in the original oracle.
However, the inverter might not be able to answer with consistent signatures to
every signing query made by the forger. The reason is that theinverter knows the
preimage of a message hash only if the hash was computed asf (pk ; r ) for a random
r , which occurs only if the corresponding entry in the list T has been chosen as
false. Note that we did not have this problem in the previous proof, because the
mere fact that the guess of the inverter is correct implied that all signing queries
could be consistently answered.

The forgery (m; � ) that A outputs can be used by the inverter to compute the
preimage of its challenge only if the hash of messagem has been computed as
ŷ � f (pk ; r ) for a random r , which occurs only if the T -entry corresponding to
m has been chosen beforehand astrue. Indeed, if that is the case and the forged
signature is correct, we have

f � 1(sk; y) = f � 1(sk; H (m)) � r � 1 = � � r � 1

We begin our sequence of games by bounding the probability ofthe above two
conditions. To this end, in gameG1 we instrument the hash oracle to keep track of
the indices of queries. We add the initialization of list T at the end of the game, so
that it becomes part of the probability space and its independence from the rest of
the game is obvious.

G0
1

InitT

Game G1 :
(pk; sk )  KG f ();
i  0; I  nil;
L ; S  nil;
(m; � )  A (pk);
h  H (m);
T  nil;
while jT j � q do

b $ true � p false;
T  b :: T

Oracle H (m) :
if m 62dom(L ) then

h $ G; L  (m; h) :: L ;
I  (m; i ) :: I ;
i  i + 1

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return f � 1(sk ; h)

We require that the forged signature � veri�es, but in addition that the entry in T
corresponding to m be true and that the entries corresponding to signing queries
be false,

successdef= T [I [m]] ^ 8 m0 2 S: : T [I [m0]] (5.14)

Observe that this condition alone implies the freshness of messagem, we do not
need to state it explicitly. We would like to compute now a lower bound for
Pr [G1 : h = f (pk; � ) ^ success] in terms of Pr [G1 : h = f (pk; � ) ^ m =2 S]. This
would be a relatively easy task if the eventsuccesswere independent ofh = f (pk; � ),
but this is not the case. However, we have for any initial memory � ,
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Pr [G1; � : h = f (pk; � ) ^ success]

= JG1K� 1(h= f (pk;� )^ success)

= JG0
1K� (�� 0: JInitT K� 0 (�� 00: 1h= f (pk;� ) � 00� 1success � 00))

= JG0
1K� (�� 0: 1(h= f (pk;� )^ m=2 S ) � 0 � Pr [InitT ; � 0 : success]))

(5.15)

Thus, computing the original probability is equivalent to m easuring a function that
can be expressed as a product of two factors, one of which is the probability of
event successafter initializing T in the intermediate memory � 0. The advantage of
doing this is that the second factor in the product is upper bounded by a constant
under some conditions on� 0 that we can prove to hold. Namely, we can show that
the following is a post-condition of the piece of codeG0

1

jL j � q + 1 ^ j Sj � qS ^ ran(I ) = [ jL j � 1 :: 0] (5.16)

Furthermore, we can assume thatm is not in S in memory � 0 because otherwise
the measured function would be null. Under this conditions,we will show that

p(1 � p)qS � Pr [InitT ; � 0 : success]

Consider the loop that initializes T ,

c def= while jT j � q do (b $ true � p false; T  b :: T )

and de�ne

F� (i; n ) def= if n < i then JT [i � n]K� elsep
G� (l; n ) def=

Y

i 2 l

if n < i then J: T [i � n]K� else1 � p

This may seem abstruse at �rst sight, but intuitively, F� (i; q � k) equals the prob-
ability of T [i ] being true after executing InitT in a memory � where jT j = k, while
G� (i; q � k) is a lower bound on the probability of 8i 2 l: : T [i ]. We prove the
following invariant about the while loop c: for every index i and list of indices l
such that i =2 l ,

F� (i; q � j JT K� j) G� (l; q � j JT K� j) � Pr [c; � : T [i ] ^ 8 i 2 l: : T [i ]] (5.17)

For any memory � satisfying (5.16) and wherem =2 S, if we take i = I [m] and
l = I [S], we obtain

p (1 � p)qS � F� (i; q) G� (l; q)

� Pr [InitT ; � : T [i ] ^ 8 i 2 l: : T [i ]]

= Pr [ InitT ; � : success]

Since any intermediate memory� 0 in (5.15) satis�es (5.16), it follows from the above
inequality that
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p (1 � p)qS Pr [GEF : h = f (pk; � ) ^ m =2 S]
= p (1 � p)qS Pr [G1 : h = f (pk; � ) ^ m =2 S]
� Pr [G1 : h = f (pk; � ) ^ success]

(5.18)

In the next game, G2, we modify the hash oracle to answer to thei -th query
according to the corresponding entry in listT : the oracle samples a random element
r in the group, stores it in list P , and respondsŷ � f (pk ; r ) if T [i ] is true, and
simply f (pk ; r ) otherwise. In this latter case, the inverse image of the hashvalue
can be recovered fromP .

Game G2 :
ŷ $ G;
T  nil;
while jT j � q do

b $ true � p false;
T  b :: T

(pk ; sk )  KG f ();
i  0; I  nil;
P ; L ; S  nil;
(m; � )  A (pk );
h  H (m)

Oracle H (m) :
if m 62dom(L ) then

r $ G;
if T [i ] then h  ŷ � f (pk ; r )

elseh  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;
I  (m; i ) :: I ;
i  i + 1

return L [m]

Oracle Sign(m) : : : :

Observe that the transformation of G1 into G2 can be justi�ed by locally reasoning
on the code of the hash oracle, without needing to apply the lazy sampling technique
(as we had to do in the previous proof), thanks to the fact that f is a permutation
and f (pk ; r ) acts as a one-time pad,

` h $ G ' ;
f hg r $ G; h  ŷ � f (pk ; r )

We now modify the way the signing oracle answers to a querym when the
corresponding entry T [I [m]] is true: instead of answering with a proper signature,
it answers with just P [m]. By using the Fundamental Lemma we will see that this
change does not modify the probability of the event that interests us.

Game G3 G4 :
ŷ $ G;
T  nil;
while jT j � q do

b $ true � p false;
T  b :: T

(pk ; sk )  KG f ();
i  0; I  nil;
P ; L ; S  nil;
(m; � )  A (pk );
h  H (m)

Oracle H (m) : : : :

Oracle Sign(m) :
S  m :: S; h  H (m);
if T [I [m]] then

bad  true;
return f � 1(sk ; h) P [m]

else returnf � 1(sk ; h)
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Game G3 is semantically identical to G2 (ignoring bad ) and di�ers from G4 only in
a portion of code appearing after �ag bad is set. Thus,

Pr [G3 : h = f (pk; � ) ^ succesŝ : bad ] = Pr [ G4 : h = f (pk; � ) ^ succesŝ : bad ]

But since success=) : bad is a post-condition of G3, it does not change anything
if we remove the last term : bad from the event under consideration,

Pr [G3 : h = f (pk ; � ) ^ success] = Pr [ G4 : h = f (pk ; � ) ^ succesŝ : bad ]

� Pr [G4 : h = f (pk ; � ) ^ success] (5.19)

The signing oracle might as well respond withP [m] to every query, regardless of
the value of T [I [m]],

Game G5 :
ŷ $ G;
T  nil;
while jT j � q do

b $ true � p false;
T  b :: T

(pk ; sk )  KG f ();
i  0; I  nil;
P ; L ; S  nil;
(m; � )  A (pk );
h  H (m);
y  ŷ ;
x  � � P [m]� 1

Oracle H (m) : : : :
if m 62dom(L ) then

r $ G;
if T [i ] then h  ŷ � f (pk ; r )

elseh  f (pk ; r )
P  (m; r ) :: P ;
L  (m; h) :: L ;
I  (m; i ) :: I ;
i  i + 1

return L [m]

Oracle Sign(m) :
S  m :: S; h  H (m);
return P [m]

We can guarantee that the response given is a proper signature when T [I [m]] is
falseby proving the following post-condition of game G5:

8(m; h) 2 L : T [I [m]] =) h = ŷ � f (pk ; P [m]) ^
: T [I [m]] =) h = f (pk ; P [m])

This allows us to show that the signing oracles inG4 and G5 are equivalent and,
using the homomorphic property of f , to show

Pr [G4 : h = f (pk ; � ) ^ success] = Pr [ G5 : h = f (pk ; � ) ^ success]

� Pr [G5 : y � f (pk ; P [m]) = f (pk; � )]

= Pr
�
GOW : f � 1(sk; y) = x

�

Therefore, we can conclude

p (1 � p)qS Pr [GEF : h = f (pk; � ) ^ m =2 S] � Pr
�
GOW : f � 1(sk; y) = x

�

We get the bound in the statement of the theorem by choosingp = ( qS + 1) � 1,
which maximizes the factorp (1 � p)qS. For this value of p, the factor approximates
exp(� 1) q� 1

S for large values ofqS.
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5.3 Practical Interpretation

If one accepts that it is reasonable to draw practical conclusions from a security
proof in the random oracle model, then the results above may be used to choose the
scheme parameters based on an estimate of the time needed to invert the underlying
trapdoor permutation.

The best known method to invert the RSA function is to factor i ts modulus.
The General Number Field Sieve (GNFS) [Lenstra and Jr. 1993]is currently the
most e�cient way of factoring large composite integers like RSA moduli; it has been
used to factor several RSA moduli from the RSA Factoring Challenge, including
the 512-bit RSA-155 number and the largest (non-special) integer factored with
a general-purpose algorithm, the 768-bit RSA-768 number [Kleinjung et al. 2010].
On heuristic grounds, an odd composite numberN can be factored using GNFS in
time sub-exponential with respect to its size in bits. Concretely, let

L N [�; � ] def= exp((� + o(1)) log(N )� log(log(N ))1� � ) (5.20)

where the constant term that accompanies� tends towards zero asN increases. A
good implementation of GNFS takes aboutL N [1=3; 1:923]time to factor a number
N . This heuristic cannot be used directly to estimate the number of operations
required to factor a certain N [Lenstra and Verheul 2001]. However, experimental
data suggests that it can be used for limited range extrapolation. If one knows,
empirically, that factoring an RSA modulus N using GNFS takes time t, then
factoring an RSA modulus M > N will take approximately time

t �
L M [1=3; 1:923]
L N [1=3; 1:923]

(5.21)

(omitting the constant term o(1)). If M � N , however, the e�ect of the constant
term can no longer be ignored and the extrapolation will overestimate the time
needed to factorM .

The computational e�ort involved in the factorization of th e 512-bit number
RSA-155 has been estimated at around 8400 MIPS-years1, or slightly less than 258

operations [Cavallar et al. 2000]. In comparison, the computational e�ort involved in
the factorization of the 768-bit number RSA-768 has been estimated at around 267

operations [Kleinjung et al. 2010]. Extrapolating from thi s estimate using (5.21), we
can make a rough prediction of the computational e�ort that w ould take to break
larger RSA moduli (Figure 5.3).

GNFS could factor a 1024-bit number in around 277 operations, and a 2048-
bit number in around 2107 operations. Assume some safe bounds forqH and qS,
qH � 260, qS � 220. To ensure that no forger within these bounds could forge a
RSA-FDH signature within t = 2 80 operations, one should pick an RSA modulus
such that factoring it takes at least qS(t + ( qH + qS)O(tRSA)) operations, otherwise

1 One MIPS-year is the equivalent of a computation running dur ing a full year at a
sustained rate of one million instructions per second. Consumer desktop PCs at the
time of this writing attain speeds of up to 80,000 MIPS.
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Fig. 5.3. Estimates for the computational e�ort required to factor la rge RSA-moduli.

one can iterate the construction in Theorem 5.4 aboutqS times to invert the RSA
function in less time than using the GNFS algorithm. For a modulus of size k,
tRSA = O(k2) when the public exponent is small. A 1024-bit modulus would not be
enough, but a 2048-bit modulus would do. In contrast, if one were to choose the
modulus according to the original security bound, even a 2048-bit modulus would
not su�ce.

The above guidelines for selecting key sizes by extrapolation should be taken
with care. One should not forget that besides the fact that the analysis is based on
heuristic ground, we are ignoring theo(1) factor from (5.20). Shamir and Tromer
[2003] said to this respect:

�To determine what key sizes are appropriate for a given application, one
needs concrete estimates for the cost of factoring integersof various sizes.
Predicting these costs has proved notoriously di�cult, for two reasons. First,
the performance of modern factoring algorithms is not understood very well:
their complexity analysis is often asymptotic and heuristic, and leaves large
uncertainty factors. Second, even when the exact algorithmic complexity is
known, it is hard to estimate the concrete cost of a suitable hypothetical
large-scale computational e�ort using current technology; it's even harder
to predict what this cost would be at the end of the key's planned lifetime,
perhaps a decade or two into the future.�

Even leaving aside the possibility of a breakthrough in number theory or the dis-
covery of a new factorization method that drastically improves on GNFS, there are
a myriad of tweaks and hardware optimizations that can be readily�or at least
hypothetically�applied to cut down the cost of factoring an R SA modulus using
GNFS. It is conjectured that it could be possible to factor 1024-bit integers, and
hence to break 1024-bit RSA keys, in 1 year using a special hardware device that
could be built at a cost of US$10M [Lenstra et al. 2003; Shamirand Tromer 2003].
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5.4 Discussion and Related Work

An earlier example of a signature scheme that follows the same hash-then-decrypt
pattern as FDH is the PKCS #1 scheme proposed by RSA Labs [RSA Data Security,
Inc. 2002]. The latest version of PKCS #1 uses the following message encoding as
a hash function

ENCODE(m; len) def= 00 k 01 k FF � � � FF k 00 k h(m)

Enough FF bytes are inserted to reach the intended lengthlen of the encoded
message. The valueh(m) is (an encoding of) the digest of the message computed
using one of MD2, MD5, SHA-1, SHA-256, SHA-384 or SHA-512. The problem
with the above padding is that it does not map messages to the entire domain
of the RSA function, but instead to a much smaller set of encoded messages. As a
consequence, the scheme is not known to admit a security reduction to the standard
RSA problem.

The generic Full-Domain Hash signature scheme based on a one-way trapdoor
permutation was �rst described in the seminal work of Bellare and Rogaway [1993]
to illustrate the applicability of the Random Oracle Model. In that work, the authors
give in an appendix a sketch of a proof of its security againstadaptive chosen-
message attacks. A more detailed proof of the exact securityof the RSA-based
variant of FDH is given in [Bellare and Rogaway 1996,Theorem3.1]; the bound
corresponds to the one we showed in Section 5.1. The bound we proved in Section 5.2
is due to Coron [2000]. Unfortunately, it is not possible to further improve the
security bound of FDH and prove that computing a forgery is ashard as inverting
RSA. There is no tighter reduction than the one in Theorem 5.4 as showed by
Coron [2002].

Bellare and Rogaway [1996] proposed the Probabilistic Signature Scheme (PSS)
as a replacement for FDH; it has since then been incorporatedinto the PKCS #1
standard as an alternative signing method. PSS is roughly ase�cient as FDH but
admits a tight security reduction. The Probabilistic FDH sc heme (PFDH) [Coron
2002] is a simple probabilistic variant of FDH that follows the same design prin-
ciples as PSS and also admits a tight reduction, but at the cost of slightly longer
signatures. As FDH, PFDH uses a hash functionH : f 0; 1g� ! G and a trapdoor
permutation f . Formally, PFDH is parametrized by the length k0 of the random
�salt� it uses, and is composed of the following triple of algorithms:

KG def= (pk; sk)  KG f ; return (pk; sk)
Sign(sk; m) def= r $ f 0; 1gk0 ; return (f � 1(sk; H (m k r )) ; r )
Verify(pk; m; (�; r )) def= if f (pk; � ) = H (m k r ) then return true else return false

Observe that FDH is obtained as a special case of this scheme by setting k0 = 0 .
We have the following result about the security of PFDH.

Theorem 5.5. Let A be an adversary mounting a chosen-message existential
forgery attack against PFDH that makes at mostqH queries to the hash oracle
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and at most qS � 2k0 queries to the signing oracle. Suppose the adversary succeeds
in forging a signature for a fresh message with probability� within time t. Then,
there exists an inverter I that �nds the preimage of an element uniformly drawn
from the range of f with probability � 0 within time t0, where

� 0 �
�

1 �
1
qS

� qS

� � exp(� 1) �

t0 � t + ( qH + qS) O(t f ) + qH qS O(k0)

This means that whenk0 � log2(qS), the security of PFDH is tightly related to the
problem of inverting the underlying trapdoor permutation. If a shorter salt is used,
PFDH remains provably secure, but a tight reduction is not possible.

Katz and Wang [2003] describe yet another signature scheme that achieves a
tight reduction using a single bit as random salt. The randomsalt can be remove al-
together by computing this bit in a deterministic (but secret) way. This scheme uses
the same key generation procedure as FDH and PSS; the signature and veri�cation
algorithms are as follows,

Sign(sk; m) def= if m 2 S then returnS[m]
elseb $ f 0; 1g; �  f � 1(sk; H (b k m)); S[m]  � ;

return �
Verify(pk; m; � ) def= if f (pk; � ) = H (0 k m) _ f (pk; � ) = H (1 k m)

then return true else return false

The signature algorithm is stateful: it will compute a signature for a message only
once and return the same signature subsequently. To avoid maintaining state and
remove the randomness, the bitb could be computed deterministically but in a
secret way from messagem. To avoid computing two hash values during veri�cation,
the bit b could be appended to the signature. We have the following result about
the security of the above scheme,

Theorem 5.6. Let A be an adversary mounting a chosen-message existential
forgery attack against the Katz-Wang scheme that makes at most qH queries to
the hash oracle and at mostqS queries to the signing oracle. Suppose the adversary
succeeds in forging a signature for a fresh message with probability � within time t.
Then, there exists an inverter I that �nds the preimage of an element uniformly
drawn from the range of f with probability � 0 within time t0, where

� 0 �
1
2

�

t0 � t + ( qH + qS + 1) O(t f )

Using just one random bit we have cut down the gap between the security of the
scheme and the problem of invertingf by a factor of qS !

The impossibility of �nding a tight reduction from the secur ity of a scheme
to a hard problem does not necessarily mean that we should deem the scheme as
insecure. It could be the case that the hard problem is not general enough, or maybe
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a slightly modi�ed version of the scheme would admit a tight reduction. Or perhaps
the protocol is indeed secure for practical matters, even though a tight reduction
does not exist. The absence of a tight reduction for RSA-FDH does not mean that
its security is only loosely related to the RSA problem. The result about the Katz-
Wang scheme described above suggests exactly the contrary.In fact, it is easy to
see that the security of RSA-FDH is equivalent to the following problem:

You are given an RSA modulusN and its public exponent e, just as in the
standard RSA problem. You are also given a setf y1; : : : ; yqg of q values
uniformly sampled from ZN . At any time you may chose a valueyi and get
its e-th root modulo N , i.e. a solution x i to xe

i � yi (mod N ); you may chose
up to qS of such values. Your goal is to compute thee-th root modulo N of
one of the remainingyi values.

It is hard to imagine how this problem could be any easier thansolving the standard
RSA problem.

Using CryptoVerif [Blanchet 2006], Blanchet and Pointcheval [2006] gave an al-
ternative formal proof of the security of FDH against existential forgery under
adaptive chosen-message attacks. This work has stirred considerable interest and
shown the bene�ts of machine-checked veri�cation. It also exposed one major weak-
ness ofCryptoVerif: it deviates from the style that is natural to cryptographer s since
it is di�cult to recover a reductionist argument from the pro of trace that the prover
outputs, and even if one manages to do so, most likely the reduction will not be
optimal. Indeed, only the original, suboptimal bound of Bellare and Rogaway has
been proved inCryptoVerif.

Our machine-checked proofs follow quite closely the pen-and-paper game-based
proofs of FDH (cf. [Pointcheval 2005]). There is however oneimportant di�erence:
in order to justify local transformations, machine-checked proofs must make in-
variants explicit and establish formally their validity. P roving that invariants hold
constitutes a fair amount of work. More generally, machine-checked proofs must
justify all reasoning, including reasoning about side conditions and about elemen-
tary mathematics (groups, probabilities) in terms of basic de�nitions. In contrast
to game transformations, for which suitable tactics have been designed, this form
of reasoning is not always amenable to automation, and thus accounts for a sub-
stantial amount of the e�ort and of the size of the proofs. Indeed, we estimate that
about a third of the proof scripts are devoted to facts about probabilities. In spite
of this, the size of machine-checked proofs remains reasonable: the formalizations of
Bellare-Rogaway and Coron proofs are about 3,000 lines each. While the length of
our proofs might look prohibitive in comparison to published proofs, we expect that
machine-checked proofs will shrink substantially asCertiCrypt (and its underlying
libraries) mature.

It must be noted that much of the proof lies outside of the trusted base: in
order to trust the proofs of FDH, it is su�cient to trust our fo rmalization of the
scheme and of the security statement, the formalization of probabilistic programs
provided by CertiCrypt, and the proof checker ofCoq. In particular, trusting the
proofs of FDH does not require trusting the sequence of games, nor the proofs of
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transitions, nor the proofs of invariants. In this respect, CertiCrypt provides the
highest possible level of assurance for the security of a cryptographic scheme, and
breaks the symmetry between the e�ort of writing and checking a cryptographic
proof. Both usually require a lot of expertise in cryptography, a lot of time, and a
good understanding of the proof; in contrast, it is rather immediate and simple for
a third party to check a proof in CertiCrypt.



6
Ciphertext Indistinguishability of OAEP

When we �rst discussed in Chapter 1 the de�nition of semantic security for
public-key encryption schemes we observed that in order to achieve this no-

tion of security an encryption scheme must be necessarily probabilistic. A deter-
ministic asymmetric encryption scheme cannot be semantically secure because an
adversary could trivially decide whether a given ciphertext is the encryption of a
plaintext by encrypting the plaintext and comparing the resulting ciphertext to the
one it was given. It is possible, however, to use a deterministic encryption scheme as
a building block to construct a semantically secure probabilistic encryption scheme.
The following de�nition gives a general way to construct a probabilistic encryption
scheme from any family of trapdoor permutations.

De�nition 6.1 (Padding-based encryption scheme). Let �; �; k : N ! N be
three functions such that8�: � (� ) + � (� ) � k(� ). Consider a family of mappings

� � : f 0; 1g� ( � )+ � ( � ) ! f 0; 1gk( � )

�̂ � : f 0; 1gk( � ) ! f 0; 1g� ( � ) [ f?g

such that � � is injective and the following consistency condition is satis�ed

8�: m 2 f 0; 1g� ( � ) ; r 2 f 0; 1g� ( � ) : �̂ � (� � (m k r )) = m

Then, given a family of trapdoor permutations (KGf ; f; f � 1) on f 0; 1gk( � ) , one can
construct a probabilistic padding-based encryption scheme(KG; E; D) as follows:

� Given � : N, the key generation algorithmKG(� ) runs the key generation al-
gorithm KGf (� ) of the family of trapdoor permutations and returns the pair of
keys(pk; sk) that it obtains as result. We assume that the description of(� � ; �̂ � )
is public, so there is no need to return it as part of the key generation process.

� Given a public keypk and a messagem 2 f 0; 1g� ( � ) the encryption algorithm
E(pk; m) chooses a uniformly random bitstring r 2 f 0; 1g� ( � ) and returns a
ciphertext computed asf (pk; � � (m k r )) 2 f 0; 1gk( � ) .

87
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� Given a secret keysk and a ciphertext c 2 f 0; 1gk( � ) , the decryption algorithm
D(sk; c) returns m = �̂ � (f � 1(sk; c)) , which is either a message inf 0; 1g� ( � ) or
the special symbol? , meaning that the ciphertext is invalid.

Many public-key encryption schemes can be viewed as particular instances of
the above construction, including OAEP [Bellare and Rogaway 1994] and its vari-
ants OAEP+ [Shoup 2001],SAEP, SAEP+ [Boneh 2001], andREACT[Okamoto and
Pointcheval 2001b]. In this chapter we will discuss the security of OAEP.

Optimal Asymmetric Encryption Padding ( OAEP) [Bellare and Rogaway 1994]
is a prominent public-key encryption scheme based on trapdoor permutations, most
commonly used in combination with the RSA and Rabin functions. OAEP is widely
deployed; many variants ofOAEPare recommended by several standards, including
IEEE P1363, PKCS, ISO 18033-2, ANSI X9, CRYPTREC and SET. Yet, the history
of OAEP security is fraught with di�culties. The original paper of B ellare and
Rogaway [1994] proves that, under the hypothesis that the underlying trapdoor
permutation family is one-way, OAEPis semantically secure under chosen-ciphertext
attacks. Shoup [2001] discovered later that this proof onlyestablished the security of
OAEP against non-adaptive chosen-ciphertext attacks (IND-CCA), and not, as was
believed at that time, against the stronger version of ciphertext indistinguishability
that allows the adversary to adaptively obtain the decrypti on of ciphertexts of its
choice (IND-CCA2). In response, Shoup suggested a modi�ed scheme, secure against
adaptive attacks under the one-wayness of the underlying permutation, and gave a
proof of the adaptive security of the original scheme when itis used in combination
with RSA with public exponent e = 3 . Simultaneously, Fujisaki et al. [2004] proved
that OAEP in its original formulation is indeed secure against adaptive attacks, but
under the assumption that the underlying permutation famil y is partial-domain
one-way. Since for the particular case of RSA this latter assumption is no stronger
than (full-domain) one-wayness, this �nally established the adaptive IND-CCA2
security of RSA-OAEP. Unfortunately, when one takes into account the additional
cost of reducing the problem of inverting RSA to the problem of partially-inverting
it, the security bound becomes less attractive. We note thatthere exist variants of
OAEPthat admit more e�cient reductions when used in combination with the RSA
and Rabin functions, notably SAEP, SAEP+ [Boneh 2001], and alternative schemes
with tighter generic reductions, e.g. REACT [Okamoto and Pointcheval 2001b].

Here we focus on a machine-checked proof of theIND-CPA security of OAEP
in the random oracle model, with a security bound that improves on the bound of
Bellare and Rogaway [2006] game-based proof. We report as well on a signi�cantly
more challenging machine-checked proof of theIND-CCA2security of OAEP in the
random oracle model.

OAEP uses as a padding scheme a two-round Feistel network based ontwo
hash functions G; H , and is commonly used together with the RSA and Rabin
permutations. Figure 6.1 shows the Feistel network representation of the padding
mappings (�; �̂ ) used in OAEP for encryption and decryption.

During encryption, a messagem 2 f 0; 1g� is �rst padded with enough zeros
to obtain a bitstring of length k � � , which is then fed to the encryption Feistel
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Fig. 6.1. Feistel network representation of the padding scheme used in OAEP for encryp-
tion (left) and decryption (right).

network together with a random bitstring r 2 f 0; 1g� ; the ciphertext is the image
under f of the resulting bitstring. To decrypt a ciphertext c, �rst compute its
preimagef � 1(sk; c) to obtain a bitstring of length k, and then run it through the
reverse Feistel network to obtain a bitstring (m k z) 2 f 0; 1gk � � . If z is not the all-
zero bitstring, the ciphertext is rejected as invalid, otherwise, m is returned as its
decryption. For concreteness, let us write down the de�nition of the OAEP scheme
for a generic trapdoor permutation.

De�nition 6.2 (OAEP encryption scheme). Let (KGf ; f; f � 1) be a family of
trapdoor permutations on f 0; 1gk , and let

G : f 0; 1g� ! f 0; 1gk � � H : f 0; 1gk � � ! f 0; 1g�

be two hash functions, with� + � < k . Let k1 = k � � � � . The OAEP scheme is
composed of the following triple of algorithms:

KG(� ) def= (pk; sk)  KG f (� ); return (pk; sk)

E(pk; m) def
= r $ f 0; 1g� ; s  G(r ) � (m k0k1 ); t  H (s) � r ; return f (pk; sk t)

D(sk; c) def
= (s k t)  f � 1(sk; c); r  t � H (s); m  s � G(r );

if [m]k1 = 0 k1 then return [m]� else return?

where [x]n (resp. [x]n ) denotes then least (resp. most) signi�cant bits of x.

The way padding is handled plays a crucial role in the proof of IND-CCA2
security of the scheme in the random oracle model that we describe in Section 6.2.
To prove that OAEP is IND-CCA2secure, it is necessary to devise an e�cient way
to simulate the decryption oracle without having the trapdoor to the underlying
permutation. It turns out that there is an e�cient way to simu late the decryption
oracle from the history of queries that an adversary made to the hash oracles
G and H . Suppose the adversary queries the decryption oracle with aciphertext
c = f (s k t), then there are two possibilities:
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1. Either s has been queried toH and r = H (s) � t has been queried toG. In that
case, the corresponding plaintext can be found by inspecting the list of queries
(r 0; G(r 0)) , (s0; H (s0)) made to G and H respectively. For each pair of queries,
check whetherc coincides with f (pk; s0 k (H (s0) � r 0)) and the (k � � � � ) least
signi�cant bits of G(r 0) � s0 are all zeros. If one such pair of queries is found,
the � most signi�cant bits of G(r 0) � s0 form the corresponding plaintext;

2. Or else there is only a minute chance that the ciphertext bevalid because it
depends on a uniformly random value (either one ofG(r ) and H (s), or both).
If the permutation is partial-domain one-way, the ciphertext may be safely
rejected as invalid.

6.1 Indistinguishability under Chosen-Plaintext Attacks

Unsurprisingly, padding does not play any role in the proof of semantic security,
because there is no need to simulate the decryption oracle. Therefore, in the rest of
this section we assume without loss of generality that� = k � � .

Theorem 6.3 (IND-CPA security of OAEP). Let A be an adversary against
the semantic security ofOAEP under chosen-message attacks that makes at mostqG

queries to the hash oracleG and at most qH queries to H . Suppose this adversary
succeeds in guessing the hidden bitb with probability � within time t. Then, there
exists an inverter I that �nds the preimage of an element uniformly drawn from
the domain of the permutation f with probability � 0 within time t0, where

� 0 � � �
�

1
2

+
qG

2�

�
(6.1)

t0 � t + qG qH O(t f ) (6.2)

and t f is an upper bound for the time needed to compute the image of a bitstring
under f .

Proof. We claim that the inverter I shown in the context of gameGOW in Figure 6.2
achieves the probability and time bounds in (6.1) and (6.2).The inverter runs the
adversary A in a simulated environment. It intercepts queries to the hash oracles
G and H and answers exactly as a random oracle would do, but keeps record of the
queries and their responses. Instead of computing the challenge ciphertext to the
IND-CPA adversary as an LR-oracle would do in the realIND-CPA game, it replaces
the challenge ciphertext with its own challengey. When adversary A halts, the
inverter I inspects the history of queries that were made to the hash oracles G
and H and tries to reconstruct a preimage of its challengey under f . It turns out
that the probability that the inverter succeeds in reconstructing such a preimage is
closely related to the probability with which adversary A wins the IND-CPA game.

The upper bound on the execution time of the inverter can be justi�ed by
examining just the gameGOW . The only non-constant overhead incurred is in the
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Game GOW :
(pk; sk)  KG f ();
y $ f 0; 1gk ;
x  I (pk; y)

Adversary I (pk; y) :
L ; M  nil;
(m0 ; m1)  A 1(pk);
~b  A 2(y);
if 9r 2 dom(L ); (s; h) 2 M :

f (pk; s k h � r ) = y
then return s k (h � r )
else return0k

Oracle G(r ) :
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g ) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

Fig. 6.2. The inverter I in the context of the one-wayness game for the family of trapd oor
permutations (KGf ; f; f � 1).

reconstruction of the preimage of the challenge by inspecting the history of queries.
In the worst case, it amounts to qH computations of the permutation f for each of
the qG queries, from which (6.2) follows directly.

To prove that the inverter achieves the probability bound (6.1), we will exhibit
a sequence of games relating the probability

� 0 = Pr
�
GOW : x = f � 1(sk; y)

�

of I successfully invertingf on its challengey, to the probability

� = Pr
h
GINDCPA : b = ~b

i

of the adversaryA correctly guessing the value of the hidden bitb in the IND-CPA
game. We start from the IND-CPA game where oraclesG and H are implemented
as random oracles�this is justi�ed by the random oracle model .

Game GINDCPA :
(pk; sk)  KG ();
L ; M  nil;
(m0; m1)  A 1(pk);
b $ f 0; 1g;
y  E (pk; mb);
~b  A 2(y)

Oracle G(r ) :
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

The hypothesis on the bound on the number of queries the adversary makes toG
can be readily encoded as:
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Pr [GINDCPA : jL j � qG] = 1

In the following game, we inline the key generation and the encryption of mb, which
uses a random seed̂r , and we eagerly sample the response that the random oracle
G gives back if r̂ is ever queried:

Game G1 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ĝ $ f 0; 1gk � � ;
(m0; m1)  A 1(pk);
b $ f 0; 1g;
g  G(r̂ ); s  g � mb;
h  H (s); t  h � r ;
y  f (pk; s k t);
~b  A 2(y)

Oracle G(r ) :
if r 62dom(L ) then

if r = r̂ then g  ĝ
elseg $ f 0; 1gk � �

L  (r; g) :: L
return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

The resulting gameG1 is semantically equivalent to the initial game, and thus we
have

Pr
h
GINDCPA : b = ~b

i
= Pr

h
G1 : b = ~b

i
(6.3)

Our objective is now to eliminate ĝ from the code of the oracleG, because if we
manage to do so, we will be able to makes completely random and remove the
dependency ofy on b.

In the next game we modify the oracleG so that if r̂ is ever queried, a �agbad
is set to true and the answer is not recorded in the oracle memory.

Game G2 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ĝ $ f 0; 1gk � � ;
(m0; m1)  A 1(pk);
b $ f 0; 1g;
s  ĝ � mb;
h  H (s); t  h � r̂ ;
y  f (pk; s k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then

bad  true; return ĝ
else

if r 62dom(L ) then
g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

In order to justify this transformation, we de�ne the follow ing relational invariant:
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� 12
def= (r̂ 2 dom(L ) =) L [r̂ ] = ĝ)h1i ^ (8r: r 6= r̂ h1i =) L [r ]h1i = L [r ]h2i )

The above invariant allows us to prove that oracleG answers queries in the same
way in gamesG1 and G2. We prove that this invariant is established after L is
initialized in G1 and G2, and that the implementations of G and H preserve it. We
know from the fact that A is well-formed that it cannot directly modify the global
variables L , r̂ , and ĝ. Therefore, the invariant � 12 is preserved through calls to the
adversary. We then inline the call to G in the body of gameG1. At this point the
invariant holds and either the adversary A has already queriedr̂ , in which case it
follows from the invariant that the answer to the call is ĝ, or it has never queried
r̂ , in which case the same follows directly by applying dead code elimination and
constant propagation. Hence,

Pr
h
G1 : b = ~b

i
= Pr

h
G2 : b = ~b

i
(6.4)

We will now use the Fundamental Lemma to removêg altogether from the code
of oracleG. We de�ne a gameG3 syntactically identical up to bad to the previous
game.

Game G3 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ĝ $ f 0; 1gk � � ;
(m0; m1)  A 1(pk);
b $ f 0; 1g;
s  ĝ � mb;
h  H (s); t  h � r̂ ;
y  f (pk; s k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then

bad  true;
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]
else

if r 62dom(L ) then
g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) : : : :

It follows from the Fundamental Lemma that
�
�
�Pr

h
G2 : b = ~b

i
� Pr

h
G3 : b = ~b

i �
�
� � Pr [G3 : bad ] (6.5)

Sinceĝ no longer appears inG, we can now sample it later in the game. We also
simplify the implementation of oracle G for the sake of readability by coalescing
the portion of code appearing in both branches of the conditional.
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Game G4 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
(m0; m1)  A 1(pk);
b $ f 0; 1g;
ĝ $ f 0; 1gk � � ;
s  ĝ � mb;
h  H (s); t  h � r̂ ;
y  f (pk; s k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then bad  true
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

We have

Pr
h
G3 : b = ~b

i
= Pr

h
G4 : b = ~b

i
(6.6)

Pr [G3 : bad ] = Pr [ G4 : bad ] (6.7)

We make now a transformation that relies on algebraic properties of the exclu-
sive or operator: instead of samplinĝg and de�ning s in terms of it, we can sample
s and de�ne ĝ in terms of s. This is justi�ed by the following program equivalence:

` ĝ $ f 0; 1gk � � ; s  ĝ � mb ' f m bg
f ĝ;s;m bg s $ f 0; 1gk � � ; ĝ  s � mb

This transformation is sometimes calledoptimistic sampling and is a pattern that
appears recurrently in game-based proofs; we gave a proof using the relational Hoare
logic in Section 3.2.2.

We can now eliminate the assignment toĝ as dead code, and samples at the
beginning of the game. Sincey no longer depends on the hidden bitb, we can sample
b at the end of the game. The resulting gameG5 is:

Game G5 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
s $ f 0; 1gk � � ;
(m0; m1)  A 1(pk);
h  H (s); t  h � r̂ ;
y  f (pk; s k t);
~b  A 2(y);
b $ f 0; 1g

Oracle G(r ) :
if r = r̂ then bad  true
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

We havePr [G4 : bad ] = Pr [ G5 : bad ]. It is obvious that, in the above game,~b and
b are independent and thus



6.1. Indistinguishability under Chosen-Plaintext Attack s 95

Pr
h
G4 : b = ~b

i
= Pr

h
G5 : b = ~b

i
=

1
2

(6.8)

The objective now is to bound the probability of bad being set. We no longer
care about b, so we remove the instruction sampling it. We reallocates to a global
variable ŝ and we eagerly sample the value ofH (ŝ).

Game G6 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ $ f 0; 1g� ;
(m0; m1)  A 1(pk);
h  H (ŝ); t  h � r̂ ;
y  f (pk; ŝ k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then bad  true
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

if s = ŝ then h  ĥ
elseh $ f 0; 1g�

M  (s; h) :: M
return M [s]

We then modify oracle H so that it does not record the answer in its memory
if ŝ is ever queried, and we inline the call toH in the body of the game. To prove
that this modi�cation to H is transparent to the adversary we prove the following
relational invariant between G6 and G7:

(ŝ 2 dom(M ) =) M [ŝ] = ĥ )h1i ^ (8s: s 6= ŝh1i =) M [s]h1i = M [s]h2i )

Game G7 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ $ f 0; 1g� ;
t  ĥ � r̂ ;
(m0; m1)  A 1(pk);
y  f (pk; ŝ k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then bad  true
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s = ŝ then return ĥ
else if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

Thus
Pr [G5 : bad ] = Pr [ G6 : bad ] = Pr [ G7 : bad ] (6.9)

We then revert to the previous implementation of oracle H , which stores the
answer to a queryŝ in its memory. This allows us to bound the probability of bad
being set by analyzing two di�erent cases:
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1. either the adversary queriedŝ to H before bad is set, in which case we set a
�ag bad 1;

2. or it did not, in which case we set a �ag bad 2.

Game G8 :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ $ f 0; 1g� ;
t  ĥ � r̂ ;
(m0; m1)  A 1(pk);
y  f (pk; ŝ k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ then

if ŝ 2 dom(M )
then bad 1  true
else bad 2  true

: : :
Oracle H (s) :
if s 62dom(M ) then

if s = ŝ then h  ĥ
elseh $ f 0; 1g�

M  (s; h) :: M
return M [s]

We prove the following relational invariant between G7 and G8:

bad h1i =) (bad 1 _ bad 2)h2i

Hence we have by the union bound,

Pr [G7 : bad ] � Pr [G8 : bad 1 _ bad 2] � Pr [G8 : bad 1] + Pr [ G8 : bad 2] (6.10)

We split the sequence of games and boundbad 1 and bad 2 separately; we deal with
bad 1 �rst.

We slice the assignment tobad 2 o� the code of G, we apply again the optimistic
sampling transformation to sample t instead of r̂ , and we reallocatet, y and pk to
global variables, obtaining:

Game P1 :
(pk ; sk)  KG f ();
L ; M  nil;
ŝ $ f 0; 1gk � � ;
t̂ $ f 0; 1g� ;
ĥ $ f 0; 1g� ;
r̂  ĥ � t̂ ;
(m0; m1)  A 1(pk );
y  f (pk ; ŝ k t̂ );
~b  A 2(y )

Oracle G(r ) :
if r = r̂ ^ ŝ 2 dom(M ) then

bad 1  true
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

if s = ŝ then h  ĥ
elseh $ f 0; 1g�

M  (s; h) :: M
return M [s]
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We now replace the condition under whichbad 1 is set to true by an equivalent one.
We prove that P1 satis�es the invariant

(8(s; h) 2 M : s = ŝ =) h = ĥ) ^ (r̂ = ĥ � t̂ ^ y = f (pk ; ŝ k t̂ ))

From this invariant we have that

r = r̂ ^ ŝ 2 dom(M ) () 9 (s; h) 2 M : f (pk ; s k (h � r )) = y

Therefore we can reformulate the condition under whichbad 1 is set in G, and
remove r̂ since it is no longer used.

Game P2 :
(pk ; sk)  KG f ();
L ; M  nil;
ŝ $ f 0; 1gk � � ;
t̂ $ f 0; 1g� ;
ĥ $ f 0; 1g� ;
(m0; m1)  A 1(pk );
y  f (pk ; ŝ k t̂ );
~b  A 2(y )

Oracle G(r ) :
if 9(s; h) 2 M :

f (pk ; s k h � r ) = y then
bad 1  true

if r 62dom(L ) then
g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

if s = ŝ then h  ĥ
elseh $ f 0; 1g�

M  (s; h) :: M
return M [s]

We have
Pr [G8 : bad 1] = Pr [ P1 : bad 1] = Pr [ P2 : bad 1] (6.11)

Next, we revert H to the original random oracle implementation and we slice
away ĥ as dead code. In the resulting gamês and t̂ are used only to compute
y = f (pk ; ŝ k t̂ ). Sinceŝ and t̂ are uniformly sampled bitstrings, their concatenation
is uniformly distributed, and since f is a permutation, the value of y is uniformly
distributed. This reasoning is summarized in the followingprogram equivalence

` ŝ $ f 0; 1gk � � ; t̂ $ f 0; 1g� ; y  f (pk ; ŝ k t̂ ) ' f pk g
f pk ;y g y $ f 0; 1gk
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Game P3 :
(pk ; sk)  KG f ();
L ; M  nil;
y $ f 0; 1gk ;
(m0; m1)  A 1(pk );
~b  A 2(y )

Oracle G(r ) :
if 9(s; h) 2 M :

f (pk ; s k h � r ) = y then
bad 1  true

if r 62dom(L ) then
g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

We now revert G to its original implementation and prove the following relational
invariant between P3 and P4 which gives a necessary condition forbad 1 to be set:

bad 1h1i =) (9r 2 dom(L ); (s; h) 2 M : f (pk ; s k (h � r )) = y )h2i

Thus,

Pr [P3 : bad 1] � Pr [P4 : 9r 2 dom(L ); (s; h) 2 M : f (pk ; s k (h � r )) = y ] (6.12)

Game P4 :
(pk ; sk)  KG f ();
L ; M  nil;
y $ f 0; 1gk ;
(m0; m1)  A 1(pk );
~b  A 2(y )

Oracle G(r ) :
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

We reallocate variablespk and y to local variables, and at the end of the game
compute x as the inverter in Figure 6.2 would do.
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Game P5 :
(pk; sk)  KG f ();
y $ f 0; 1gk ;
L ; M  nil;
(m0; m1)  A 1(pk);
~b  A 2(y);
if 9r 2 dom(L ); (s; h) 2 M :

f (pk; s k h � r ) = y
then x  s k (h � r )
else x  0k

Oracle G(r ) :
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

Compare this last game to gameGOW in Figure 6.2: both games semantically equiv-
alent once the call to I in GOW is inlined. Furthermore,

Pr [P4 : 9r 2 dom(L ); (s; h) 2 M : f (pk ; s k (h � r )) = y ]
� Pr

�
P5 : x = f � 1(sk; y)

�

= Pr
�
GOW : x = f � 1(sk; y)

� (6.13)

From (6.11)�(6.13) we get

Pr [G8 : bad 1] � Pr
�
GOW : x = f � 1(sk; y)

�
(6.14)

We are now left with the problem of bounding bad 2 in game G8. De�ne the
gameQ parametrized by two instructions c1 and c2 as follows

Game Q(c1; c2) :
(pk; sk)  KG f ();
L ; M  nil;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ $ f 0; 1g� ;
t  ĥ � r̂ ;
(m0; m1)  A 1(pk);
y  f (pk; ŝ k t);
~b  A 2(y)

Oracle G(r ) :
if r = r̂ ^ ŝ =2 dom(M ) then

bad 2  true
: : :

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
if s = ŝ ^ bad 2 then

bad 2; bad 3  true; c1

if s = ŝ ^ : bad 2 then
bad 4  true; c2

M  (s; h) :: M
return M [s]

Flag bad 3 is set whenŝ is �rst queried to H and G(r̂ ) has already been queried.
Flag bad 4 is set whenŝ is �rst queried to H and G(r̂ ) has not yet been queried.
Consider the games

Q1
def= Q(h  ĥ ; h  ĥ )

Q2
def= Q(h $ f 0; 1g� ; h  ĥ )

Q3
def= Q(h $ f 0; 1g� ; h $ f 0; 1g� )
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Using the fundamental lemma together with appropriate progam invariants, we
obtain

Pr [G8 : bad 2] = Pr [ Q1 : bad 2]
= Pr [ Q2 : bad 2] (FL, bad 2)
= Pr [ Q2 : bad 2 ^ bad 4] + Pr [ Q2 : bad 2 ^ : bad 4]
= Pr [ Q2 : bad 2 ^ bad 4] + Pr [ Q3 : bad 2 ^ : bad 4] (FL, bad 4)
= 0 + Pr [ Q3 : bad 2 ^ : bad 4] (bad 4 =) : bad 2)
= Pr [ Q3 : bad 2 ^ bad 4] + Pr [ Q3 : bad 2 ^ : bad 4] (bad 4 =) : bad 2)
= Pr [ Q3 : bad 2]

We use optimistic sampling and the fact that f is a permutation to prove the
following equivalence:

r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ $ f 0; 1g� ;
t  ĥ � r̂ ;
y  f (pk; ŝ k t)

' ;
f r̂ ;y g

r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
t $ f 0; 1g� ;
ĥ  t � r̂ ;
y  f (pk; ŝ k t)

' ;
f r̂ ;y g

r̂ $ f 0; 1g� ;
y $ f 0; 1gk ;

In the next game, we apply the above equivalence and we revertoraclesG and H
to the original random oracles,

Game Q4 :
(pk; sk)  KG f ();
L ; M  nil;
y $ f 0; 1gk ;
(m0; m1)  A 1(pk);
~b  A 2(y);
r̂ $ f 0; 1g� ;

Oracle G(r ) :
if r 62dom(L ) then

g $ f 0; 1gk � � ;
L  (r; g) :: L

return L [r ]

Oracle H (s) :
if s 62dom(M ) then

h $ f 0; 1g� ;
M  (s; h) :: M

return M [s]

If bad 2 is set to true in Q3 then r̂ must be in L , i.e. the following is a relational
invariant of Q3 and Q4,

bad 2h1i =) (r̂ 2 dom(L ))h2i

and we can readily bound the probability of r̂ being in the domain of L in Q4

because we know that the adversary makes at mostqG calls to G,

Pr [G8 : bad 2] = Pr [ Q3 : bad 2] � Pr [Q4 : r̂ 2 dom(L )] �
qG

2� (6.15)

Putting (6.10), (6.14) and (6.15) together,
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Pr [G7 : bad ] � Pr
�
GOW : x = f � 1(sk; y)

�
+

qG

2� (6.16)

Finally from (6.3)�(6.9) and (6.16),
�
�
�
�Pr

h
GINDCPA : b = ~b

i
�

1
2

�
�
�
� � Pr

�
GOW : x = f � 1(sk; y)

�
+

qG

2� (6.17)

From which follows the bound (6.1). ut

6.2 Indistinguishability under Chosen-Ciphertext Attack s

We use as a starting point the proof of Pointcheval [2005], which �lls several gaps
in the reduction of Fujisaki et al. [2004], resulting in a weaker security bound.
Our proof unveils minor glitches in the proof of Pointcheval [2005] and marginally
improves on its exact security bound (reducing the coe�cients) by performing an
aggressive analysis of oracle queries earlier in the sequence of games. The initial
and �nal games of the reduction appear in Figure 6.3; the proof in CertiCrypt is
about 10,000 lines long.

Theorem 6.4 (IND-CCA2 security of OAEP). Let A be an adversary against
the ciphertext indistinguishability of OAEP under an adaptive chosen-ciphertext
attack that makes at mostqG and qH queries to the hash oraclesG and H , respec-
tively, and at most qD queries to the decryption oracleD.1 SupposeA achieves an
advantage� within time t during game GINDCCA . Then, there exists an inverter I
that �nds a partial preimage (the k � � most signi�cant bits of a preimage) of an
element uniformly drawn from the domain of f with probability � 0 within time t0

during experiment GPDOW , where

t0 � t + qG qH qD O(t f ) � 0 �
1
qH

�
� �

3qD qG + q2
D + 4 qD + qG

2� �
2qD

2k1

�

6.2.1 Proof Outline

Figure 6.4 outlines the structure of the proof; the �rst step from GINDCCA to G1

and the �nal step from G5 to GPDOW are not displayed. The reduction successively
eliminates all situations in which the plaintext extractor used by the inverter to
simulate decryption may fail.

Starting from game GINDCCA , we use the logic of swapping statements to �x the
hash ĝ that G gives in response to the random seed of the challenge ciphertext; the
computation of the challenge ciphertext unfolds to:

1 The machine-checked proof slightly relaxes this condition ; it requires that the length of
L G be at most qD + qG, so that the adversary could trade queries to D for queries to G.
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Game GINDCCA :
L G ; L H ; L D  nil;
(pk ; sk )  KG ();
(m0 ; m1)  A 1(pk );
b $ f 0; 1g;
ĉ  E (mb);
ĉdef  true;
~b  A 2(ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

g $ f 0; 1gk � � ;
L G  (r; g ) :: L G

return L G [r ]

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H  (s; h) :: L H

return L H [s]

Oracle D(c) :
L D  (ĉdef; c) :: L D ;
(s; t)  f � 1(sk ; c);
h  H (s);
r  t � h;
g  G(r );
if [s � g]k 1 = 0 k 1 then

return [s � g]�

else return?

Game GPDOW :
(pk; sk)  KG f ();
s $ f 0; 1gk � � ;
t $ f 0; 1g� ;
~s  I (pk; f (pk; s k t))

Adversary I (pk; y) :
L G ; L H  nil;
p̂k  pk;
(m0 ; m1)  A 1(pk);
~b  A 2(y);
s $ dom(L H );
return s

Oracle G(r ) :
if r 62dom(L G ) then

g $ f 0; 1gk � � ;
L G  (r; g ) :: L G

return L G [r ]

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H  (s; h) :: L H

return L H [s]

Oracle D(c) :
if 9(s; h) 2 L H ; (r; g ) 2 L G :

c = f (p̂k ; sk (r � h)) ^
[s � g]k 1 = 0 k 1

then return [s � g]�

else return?

Fig. 6.3. Initial and �nal games in the reduction of the IND-CCA2 security of OAEP
to the problem of partially inverting the underlying permut ation. We exclude cheating
adversaries who query the decryption oracle with the challenge ciphertext during the
second phase of the experiment by requiring (true; ĉ) =2 L D to be a post-condition of the
initial game.

r̂ $ f 0; 1g� ;
ŝ  ĝ � (mb k 0k1 );
ĥ  H (ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ )

where ĝ is sampled from f 0; 1gk � � before the �rst call to A . We then make G
respond to an adversary querŷr with a freshly sampled value instead of̂g; this only
makes a di�erence if �ag bad is set in gameG1. Since at this point ĝ is uniformly
distributed and independent from the adversary's view, the value ŝ computed as
ĝ� (mb k 0k1 ) is as well uniformly distributed and independent from the adversary's
view. This removes the dependence of the adversary output onthe hidden bit b,
and thus the probability of a correct guess is exactly1=2. Using the Fundamental
Lemma we obtain the bound:

Pr
h
GIND-CCA2 : ~b = b

i
� Pr

h
G1 : ~b = b

i
= Pr

h
GIND-CCA2 : ~b = b

i
�

1
2

� Pr [G1 : bad ] (6.18)
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Pr [ G1 : bad ] � Pr [ G2 : bad ] +
q2

D + qD qG + qD

2�
+

qD

2k 1

Inline G and case analysis on s 2 dom(L H )
in D . Reject ciphertexts with a fresh g or h

Pr [ G2 : bad ] � Pr [ G3 : bad ] +
qD

2k 1

Eliminate assignments to L G in D
Update D to enforce new bound on L G

Game G1 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true;

g $ f 0; 1gk � � ;
L G [r ]  g

else g  L G [r ]
return g

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qD + qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ;
(s; t )  f � 1 (sk ; c);
r  t � H (s);
g  G(r );
if [s � g]k 1 = 0 k 1 then return [s� g]� else return ?

Game G2 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true;

g $ f 0; 1gk � � ;
L G [r ]  g

else g  L G [r ]
return g

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qD + qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ;
(s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

r  t � H (s);
if r 2 dom(L G ) then

g  L G [r ];
if [s � g]k 1 = 0 k 1 then return [s� g]� else return ?

else
if r = r̂ then bad  true;
g $ f 0; 1gk � � ; L G [r ]  g; return ?

else
r  t � H (s);
if r =2 dom(L G ) then g $ f 0; 1gk � � ; L G [r ]  g
return ?

Game G3 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true;

g $ f 0; 1gk � � ;
L G [r ]  g

else g  L G [r ]
return g

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ;
(s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

r  t � H (s);
if r 2 dom(L G ) then

g  L G [r ];
if [s � g]k 1 = 0 k 1 then return [s� g]� else return ?

else
if r = r̂ then bad  true;
return ?

else
r  t � H (s); return ?

Fig. 6.4. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.
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Pr [ G3 : bad ] � Pr [ G4 : bad ] +
qD qG + qD

2�

Inline calls to H in D
Eliminate assignments to L H in D

Pr [ G4 : bad ] � Pr [ G5 : bad H ] +
qD qG + 2 qD + qG

2�

Eagerly sample the value of ĥ
Introduce bad H in H
Bound bad in terms of bad H

Game G4 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true;

g $ f 0; 1gk � � ;
L G [r ]  g

else g  L G [r ]
return g

Oracle H (s) :
if s 62dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ;
(s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

h  L H [s]; r  t � h ;
if r 2 dom(L G ) then

g  L G [r ];
if [s � g]k 1 = 0 k 1 then return [s� g]� else return ?

else
if r = r̂ then bad  true;
return ?

else return ?

Game G5 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
ĥ $ f 0; 1g� ;
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true;

g $ f 0; 1gk � � ;
L G [r ]  g

else g  L G [r ]
return g

Oracle H (s) :
if s 62dom(L H ) then

if s = ŝ then
bad H  true;

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ;
(s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

h  L H [s]; r  t � h ;
if r 2 dom(L G ) then

g  L G [r ];
if [s � g]k 1 = 0 k 1 then return [s� g]� else return ?

else return ?
else return ?

Fig. 6.4. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.

The transition from G1 to G2 modi�es the decryption oracle successively by inlining
the call to G, and by applying the Fundamental and Failure Event lemmas toreject
the ciphertext when there is a negligible chance it matches the padding. Overall,
we prove:

Pr [G1 : bad ] � Pr [G2 : bad ] +
q2

D + qD qG + qD

2� +
qD

2k1
(6.19)

Next, we eliminate fresh calls toG in the decryption oracle. These calls correspond
to the two assignmentsL G [r ]  g, since calls toG have been inlined previously.
We perform an aggressive elimination and remove both calls.As a result, in game
G3 the length of list L G (i.e. the number of calls to G) is bounded by qG rather than
qD + qG. This is the key to improve on the security bound of Pointcheval [2005], who
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only removes the second call. The proof relies on the logic ofswapping statements
to show that values of discarded calls are �uniformly distributed and independent
from the adversary's view�. Details appear below. Overall,we prove:

Pr [G2 : bad ] � Pr [G3 : bad ] +
qD

2k1
(6.20)

Likewise, we eliminate calls toH in D, yielding a new gameG4 in which the de-
cryption oracle does not add any new values to the memories ofG and H . Using
the Fundamental and Failure Event lemmas, we obtain:

Pr [G3 : bad ] � Pr [G4 : bad ] +
qD qG + qD

2� (6.21)

We next �x the value ĥ that oracle H gives in response toŝ, and then make H
return a freshly sampled value instead of̂h . This allows us to bound the probability
of bad in terms of the probability of a newly introduced event bad H . The proof
uses the hypothesis thatA 2 cannot query the decryption oracle with the challenge
ciphertext, and yields:

Pr [G4 : bad ] � Pr [G5 : bad H ] +
qD qG + 2 qD + qG

2� (6.22)

Finally, we prove that the probability of bad H in G5 is upper bounded by the
probability that the inverter I succeeds in partially inverting the permutation f .
The proof uses the (standard, non-relational) invariant on G5:

bad H =) ŝ 2 dom(L H )

The inverter I that we build (shown in Figure 6.3) gives its own challengey as the
challenge ciphertext to the IND-CCA2adversary A and returns a random element
in the list of queries made toH . Thus,

Pr [G5 : bad H ] � Pr [G5 : ŝ 2 dom(L H )] �
1
qH

Pr [GPDOW : s = ~s] (6.23)

Where the last inequality follows from the bound on the number of queries to oracle
H and an instance of the optimistic sampling equivalence:

` ĥ $ f 0; 1g� ; t̂  ĥ � r̂ ' f r̂ g
f ĥ ; t̂ ; r̂ g

t̂ $ f 0; 1g� ; ĥ  t̂ � r̂

Putting together (6.18)�(6.23) concludes the proof of the statement in Theorem 6.4.

Detailed proof of the transition from G2 to G3

We use the �ve intermediate games shown in Figure 6.5. The �rst transition from G2

to G1
2 consists in adding a tag to queries in the memory ofG indicating whether the

query has been made directly by the adversary or indirectly,through the decryption
oracle. The decryption oracle tests this tag when accessingthe memory of G: if the
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Game G1
2 G2

2 :
L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true

g $ f 0; 1gk � � ;
L G [r ]  ( false; g)

else
(d; g )  L G [r ];
L G [r ]  ( false; g)

return g

Oracle H (s) :
if s =2 dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qD + qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ; ( s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

r  t � H (s);
if r 2 dom(L G ) then

(d; g )  L G [r ];
if d = true then

if [s � g]k 1 = 0 k 1 then
bad 1  true; return [s � g]� return ?

else return ?
else

if [s � g]k 1 = 0 k 1 then return [s � g]�

else return ?
else

if r = r̂ then bad  true;
g $ f 0; 1gk � � ; L G [r ]  ( true; g); return ?

else
r  t � H (s);
if r 62dom(L G ) then

g $ f 0; 1gk � � ; L G [r ]  ( true; g);
return ?

Game G3
2 G4

2 G5
2 :

L G ; L H ; L D  nil;
(pk ; sk )  KG f ();
(m 0 ; m 1 )  A 1 (pk );
b $ f 0; 1g;
r̂ $ f 0; 1g� ;
ŝ $ f 0; 1gk � � ;
ĥ  H ( ŝ);
t̂  ĥ � r̂ ;
ĉ  f (pk ; ŝ k t̂ );
ĉdef  true;
~b  A 2 ( ĉ)
L  L G ;
while L 6= nil do

( r; (b; g))  hd(L );
if b = true then

g $ f 0; 1gk � � ;
L G [r ]  ( true; g)

L  tl (L )

Oracle G(r ) :
if r 62dom(L G ) then

if r = r̂ then
bad  true

g $ f 0; 1gk � � ;
L G [r ]  ( false; g)

else
(d; g )  L G [r ];
if d = true then

g $ f 0; 1gk � � ;

g $ f 0; 1gk � � ;
L G [r ]  ( false; g);
bad 2  P (g; r )

return g

Oracle H (s) :
if s =2 dom(L H ) then

h $ f 0; 1g� ;
L H [s]  h

else h  L H [s]
return h

Oracle D (c) :
if ( ĉdef ^ ĉ = c) _ qD < jL D j _ qD + qG < jL G j then

return ?
else

L D  ( ĉdef; c) :: L D ; ( s; t )  f � 1 (sk ; c);
if s 2 dom(L H ) then

r  t � H (s);
if r 2 dom(L G ) then

(d; g )  L G [r ];
if d = true then return ?
else

if [s � g]k 1 = 0 k 1 then return [s � g]�

else return ?
else

if r = r̂ then bad  true;
g $ f 0; 1gk � � ; L G [r ]  ( true; g); return ?

else
r  t � H (s);
if r 62dom(L G ) then

g $ f 0; 1gk � � ; L G [r ]  ( true; g);
return ?

P (g; r ) def
= 9(d; c) 2 L D : let (s; t ) = f � 1 (sk ; c) in s 2 dom(L H ) ^ r = t � L H [s] ^ [s � g]k 1 = 0 k 1

Fig. 6.5. Games in the transition from G2 to G3. Fragments of code inside a box appear
only in the game whose name is surrounded by the matching box.
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ciphertext queried is valid and its random seed appeared in aprevious decryption
query, but not yet in a direct query to G, the decryption oracle raises a �agbad 1.
We show that this can happen with probability 2� k1 for any single query, since the
random seed is uniformly distributed and independent from the adversary's view.
In this case, the decryption oracle can safely reject the ciphertext, as done in game
G2

2. The proof proceeds in two steps: We show that gameG2 is observationally
equivalent to gameG1

2 using the relational invariant

L G h1i = ( map (� (r; (b; g)) :(r; g)) L G )h2i

Therefore Pr [G2 : bad ] = Pr
�
G1

2 : bad
�
. Game G2

2 is identical to G1
2, except that

it rejects ciphertexts that raise the bad 1 �ag. Applying the Fundamental Lemma
(i.e. Lemma 3.3), we show that

Pr
�
G1

2 : bad
�

� Pr
�
G2

2 : bad
�

+ Pr
�
G2

2 : bad 1
�

Our next goal is to show that answers to queries tagged astrue can be resam-
pled. However, one cannot apply the logic of swapping statements at this stage to
resample these answers inG, because �agbad 1 is set onD and depends on them.
The solution is to introduce a new gameG3

2 that sets another �ag bad 2 in the code
of G instead of setting bad 1 in the decryption oracle2. Flag bad 2 is raised when-
ever the adversary queriesG with the random seed of a valid ciphertext previously
submitted to the decryption oracle. We prove that gamesG2

2 and G3
2 satisfy the

relational invariant:
bad 1h1i =) (bad 2 _ � )h2i

where

� def= 9(d; c) 2 L D : let (s; t) = f � 1(sk ; c); r = t � L H [s] in
r 2 dom(L G ) ^ s 2 dom(L H ) ^ fst(L G [r ]) = false^ [s � snd(L G [r ])]k1 = 0 k1

Therefore:

Pr
�
G2

2 : bad
�

+ Pr
�
G2

2 : bad 1
�

� Pr
�
G3

2 : bad
�

+ Pr
�
G3

2 : bad 2 _ �
�

We now consider gameG4
2 where oracleG resamples the answers to queries previ-

ously sampled in the decryption oracle. As such answers are uniformly distributed
and independent from the adversary's view, the logic for swapping statements can
be used to establish that this transformation preserves semantics. Hence:

Pr
�
G3

2 : bad
�

+ Pr
�
G3

2 : bad 2 _ �
�

= Pr
�
G4

2 : bad
�

+ Pr
�
G4

2 : bad 2 _ �
�

Note that in order to prove semantic equivalence we need to resample the values in
L G associated to queries tagged astrue�made by the D�at the end of the game.
Using Lemma 3.4, we upper bound the probability ofbad 2 _ � in G4

2:

2 As bad 1 is not set anymore, we simplify the code of D by coalescing branches in the
innermost conditional.
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Pr
�
G4

2 : bad 2 _ �
�

�
qD

2k1

We are now only interested in boundingbad , so we can remove as dead code the
fragment of code at the end ofG4

2 that resamples values inL G , obtaining G5
2, and

prove that
Pr

�
G4

2 : bad
�

= Pr
�
G5

2 : bad
�

We �nally prove that game G5
2 is observationally equivalent to G3, in which the

code for the oracleG is reverted to its original form and the decryption oracle no
longer tampers with the memory of G. Thus,

Pr [G2 : bad ] � Pr
�
G5

2 : bad
�

+
qD

2k1
= Pr [ G3 : bad ] +

qD

2k1

ut

Comparison with the security bound of Pointcheval [2005]

Pointcheval obtains a slightly di�erent bound:

� 0 �
1
qH

�
� �

4qD qG + 2 q2
D + 4 qD + 8 qG

2� �
3qD

2k1

�

We marginally improve on this bound by reducing the coe�cients. As previously
mentioned, the improvement stems from the transition from G2 to G3, where we
eliminate both calls to G in the decryption oracle, whereas only one of them is
eliminated in [Pointcheval 2005]. In fact, eliminating both calls is not only needed
to give a better bound, but is essential for the correctness of the proof. Indeed,
the transition from G3 to G4 would not be possible if D modi�ed the memory
of G. Concretely, the justi�cation of Equation (27) in [Pointch eval 2005] contains
two minor glitches: �rstly, the remark �which just cancels r 0 from L G � oversees
the possibility of this removal having an impact on future queries. Secondly, �the
probability for r 0 to be in L G is less thanqG=2� � oversees that the length ofL G

is upper bounded by qG + qD rather than just qG, as the decryption oracle still
adds values to L G ; a correct bound for this probability in [Pointcheval 2005] is
(qG + qD )=2� .

6.2.2 Notes about the Proved Security Bound

We note that although we exhibit an explicit inverter that ac hieves the advantage in
the statement of Theorem 6.4, we do not prove formally that it executes within the
given time bound. We would be loath to say that the proof is incomplete, because
the time complexity of the inverter is evident from its formu lation. Nonetheless,
we can prove that the inverter executes in probabilistic polynomial-time (under a
reasonable cost model for constructions in the language) and thus the asymptotic
security of OAEP under the hypothesis that the underlying permutation famil y is
partial-domain one-way. Formally, if the winning probabil ity Pr [GPDOW : s = ~s] of
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any PPT inverter is negligible, we can prove that the advantage of any IND-CCA2
adversary is also negligible, providedk1 and � increase at least linearly with the
security parameter, i.e.,

9�: 9� 0: 8� � � 0: � � � � ^ k1 � � �

Moreover, we observe that by using a standard time-space trade-o� argument
(cf. [Pointcheval 2005]) one can reduce the factorqGqHqD in the time bound of
the inverter to qGqH.

6.3 About the Security of OAEP in the Standard Model

From a practical point of view, in reductionist arguments li ke the ones we studied
in this chapter, the tightness of the security bound makes a whole world of dif-
ference. The tighter the bound is, the closer the problem of breaking the security
of the scheme is to the problem of solving the computational hard problem under
consideration. Another aspect of practical importance is the model where the proof
is carried out. A proof in the random oracle model, like the proofs we presented,
only rules out generic attacksthat do not exploit the implementation details of the
hash functions G and H . In contrast, a proof in the standard model of cryptogra-
phy considers the possibility that an adversary might be able to exploit weaknesses
in the actual implementation of the hash functions to attack the security of the
scheme.

Several authors have studied the possibility of provingOAEP IND-CCA2secure
in the standard model, either when used in conjunction with the RSA function
or with a trapdoor permutation satisfying particular class es of properties. Shoup
[2001] showed the impossibility of �nding a blackbox reduction from the IND-CCA2
security of OAEP to the one-wayness of the underlying trapdoor permutation,ei-
ther in the standard or random oracle model, but he exhibiteda blackbox reduction
in the random oracle model to the problem of partially inverting the permutation.
Brown [2006] showed a pathological instantiation of the hash functions that would
render OAEP insecure, which means that a security proof should at least assume
some property about the hash functions. He ruled out as well the possibility of prov-
ing the IND-CCA2security of OAEP in the standard model using certain types of
reductions. Finally, Kiltz and Pietrzak [2009] prove a blackbox separation result: no
padding-based encryption scheme can be provedIND-CCA2secure in the standard
model, even assuming the underlying trapdoor permutation is ideal. This means
in particular, that is impossible to prove the IND-CCA2 security of OAEP in the
standard model under most standard assumptions about the trapdoor permutation,
including one-wayness, partial-domain one-wayness, or claw-freeness.

In contrast, Kiltz et al. [2010] recently proved the IND-CPA security of generic
OAEPin the standard model under non-interactive and non-interdependent assump-
tions on the underlying trapdoor permutation and the hash functions. In particular,
they prove that RSA-OAEP is IND-CPA secure when instantiated using at-wise in-
dependent hash function (for an appopriatet) provided RSA is a lossy trapdoor
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permutation. This latter condition can be proved under the phi-hiding assumption,
a number-theoretic assumption slightly stronger than the RSA assumption.

Despite the above negative results, most people agree that asecurity proof of a
scheme in the random oracle model gives strong evidence about its practical secu-
rity, and that it is very unlikely that someone comes out with an attack exploiting
details of the concrete instantiations of random oracles.



7
Machine-Checked Formalization of

Zero-Knowledge Protocols

Proofs of knowledge [Goldreich 2002; Goldwasser et al. 1989] are two-party
interactive protocols where one party, called theprover, convinces the other

one, called the veri�er , that it knows something. Typically, both parties share a
common input x and something refers to a witnessw of membership of the input
x to an N P language. Proofs of knowledge are useful to enforce honest behavior
of potentially malicious parties [Backes et al. 2009]: the knowledge witness acts as
an authentication token used to establish that the prover is a legitimate user of a
service provided by the veri�er, or as evidence that a message sent by the prover
has been generated in accordance to the rules of a protocol. Proofs of knowledge
must be complete, so that a prover that has indeed knowledge of a witness can
convince a honest veri�er, and sound, so that a dishonest prover has little chance
of being convincing. In addition, practical applications often require to preserve
secrecy or anonymity; in such cases the proof should not leakanything about the
witness. Zero-knowledge proofs are computationally convincing proofs of knowledge
that achieve this goal, i.e. they are convincing and yet the veri�er does not learn
anything from interacting with the prover beyond the fact th at the prover knows
a witness for their common input. This property has an elegant formulation: a
protocol is said to be zero-knowledge when transcripts of protocol runs between a
prover P and a (possibly dishonest) veri�er V can be e�ciently simulated without
ever interacting with the prover�but with access to the strat egy ofV . In particular,
this implies that proofs are not transferable; a conversation is convincing only for
the veri�er interacting with the prover and cannot be replay ed to convince a third
party.

In his PhD dissertation, Cramer [1996] introduced the concept of � -protocols , a
class of three-move interactive protocols that are suitable as a basis for the design of
many e�cient and secure cryptographic services. Cramer described � -protocols as
abstract modules and showed that they are realizable when instantiated for most

111
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computational assumptions commonly considered in cryptography, including the
di�culty of computing discrete logarithms or factoring int egers, or the existence of
some abstract function families (e.g. one-way group homomorphisms). In addition,
he gave an e�ective method to combine� -protocols to obtain zero-knowledge proofs
of any Boolean formula constructed using the AND and OR operators from formulæ
for which � -protocols exist. This means that� -protocols can be used in a practical
setting as building blocks to achieve various cryptographic goals. Applications of� -
protocols notably include secure multi-party computation, identi�cation schemes,
secret-ballot electronic voting, and anonymous attestation credentials.

This chapter reports on a fully machine-checked formalization of a compre-
hensive theory of� -protocols using CertiCrypt. The formalization consists of more
than 10,000 lines ofCoqcode, and covers the basics of� -protocols: de�nitions, rela-
tions between di�erent notions of security, general constructions and composability
theorems. We show its applicability by formalizing severalwell-known protocols,
including the Schnorr, Guillou-Quisquater, Okamoto, and Feige-Fiat-Shamir pro-
tocols. The highlight of the formalization is a generic account of � � -protocols,
that prove knowledge of a preimage under a group homomorphism � . We use the
module system of Coq to de�ne and relate the classes of� � - and � -protocols.
Our formalization of � � -protocols provides su�cient conditions (the so-called spe-
cialness conditions) on the group homomorphism� so that every � � -protocol can
be construed as a� -protocol. Moreover, we show that special homomorphisms
are closed under direct product, which yields a cheap way of AND-combining � �

proofs. We exploit the generality of our result to achieve short proofs of complete-
ness, special soundness, and (honest veri�er) zero-knowledge for many protocols in
the literature.

7.1 Sigma-Protocols

A � -protocol is a 3-step interactive protocol where a proverP interacts with a
veri�er V . Both parties have access to a common inputx, and the goal of the
prover is to convince the veri�er that it knows some value w suitably related to
x, without revealing anything beyond this assertion. The protocol begins with the
prover sending a commitment r to the veri�er, who responds by sending back a
random challengec; the prover then computes a responses to the challenge and
sends it to the veri�er, who either accepts or rejects the conversation. Figure 7.1
shows a diagram of a run of a� -protocol.

Formally, a � -protocol is de�ned with respect to a knowledge relationR. This
terminology comes from interpreting the proof system as proving membership of
the common input to an N P languageL . Each N P language admits an e�cient
membership veri�cation procedure via a polynomial-time recognizable relationRL

such that
L = f x j 9w: RL (x; w)g

Proving that x belongs to the language amounts to proving knowledge of a witness
w related to x via RL . In CertiCrypt, the class of � -protocols is formalized as a
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Prover Veri�er

knows (x; w) knows only x

computes r

choosesc

computes s accepts/rejects

r

c

s

Fig. 7.1. Characteristic 3-step interaction in a run of a � -protocol.

module type parametrized over a knowledge relationR , and a number of proce-
dures specifying the di�erent phases of the prover and the veri�er; the module type
speci�es as well the properties that any given protocol instance must satisfy. In the
remainder of this section we describe in detail our formal de�nition of � -protocols
and comment on an alternative�but in some sense equivalent�sp eci�cation of the
zero-knowledge property.

De�nition 7.1 ( � -protocol). A � -protocol for a knowledge relationR is a 3-step
protocol between a proverP and a veri�er V , whose interaction is described by the
following parametrized program:

Protocol (x; w) :
(r; state )  P1(x; w);
c  V1(x; r );
s  P2(x; w; state; c );
b  V2(x; r; c; s )

In the above program specifying a� -protocol, the two phases of the prover are
described by the proceduresP1 and P2, while the phases of the veri�er are described
by V1 and V2. Note that the protocol explicitly passes state between thephases of the
participants; we could have used instead global variables shared betweenP1 and P2

on one hand, andV1 and V2 on the other, but that would unnecessarily complicate
the proofs because we would need to specify that the procedures representing one
party do not have access to the shared state of the other party. All the protocols that
we consider in the following arepublic-coin, meaning that a honest veri�er chooses
the challenge uniformly from some prede�ned setC. A � -protocol must satisfy the
following three properties,

1. Completeness: Given a public inputx together with a witness w such that
R(x; w), the prover is always able to convince the veri�er:

8m: R(m(x); m(w)) = ) Pr [Protocol; m : b = true] = 1

2. Special Honest Veri�er Zero-Knowledge (sHVZK): There exists a probabilistic
polynomial-time simulator S that given x 2 dom(R) and a challengec, computes
triples (r; c; s) with the same distribution as a valid conversation. The property
is formalized in terms of a version of the protocol where the challengec is �xed
as a parameter,
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Protocol (x; w; c) :
(r; state )  P1(x; w);
s  P2(x; w; state; c );
b  V2(x; r; c; s )

' f x;c g^ R ( x;w )
f r;c;s g (r; s )  S(x; c)

3. Special Soundness: Given two accepting conversations(r; c1; s1), (r; c2; s2) for
an input x, with the same commitmentr , but with di�erent challenges, there ex-
ists a PPT knowledge extractorKE that computes a witnessw such thatR(x; w).
Formally, for any memory m,

m(c1) 6= m(c2)
Pr [b  V2(x; r; c 1; s1); m : b = true] = 1
Pr [b  V2(x; r; c 2; s2); m : b = true] = 1

9
=

;
=)

Pr [w  KE(x; r; c 1; c2; s1; s2); m : R(x; w)] = 1

Special soundness might seem a relatively weak property at �rst sight. It can
be shown using a rewinding argument (although we did not formalize this result in
Coq) that thanks to special soundness, any public-coin� -protocol with challenge
set C can be seen as aproof of knowledgewith soundness error jCj � 1 [Damgård
and P�tzmann 1998]. Informally, this means that any e�cient prover (possibly
dishonest) that manages to convince a honest veri�er for a public input x with
a probability greater than jCj � 1 can be turned into an e�cient procedure that
computes a witness forx.

7.1.1 Relation between sHVZK and HVZK

Some authors require that� -protocols satisfy a somewhat weaker property known
as honest veri�er zero-knowledge rather than thespecial version of this property
mentioned above. The di�erence is that in the former the simulator is allowed to
choose the challenge while in the latter the challenge is �xed. In other words, plain
HVZK requires that there exists a PPT simulator S that given just x 2 dom(R)
computes a triple (r; c; s) with the same distribution as the veri�er's view of a
conversation. The relation between the two notions has beenstudied by Cramer
[1996]. As an illustration of the use of CertiCrypt and the � -protocol framework,
the formalization of this relation is discussed below. Without loss of generality we
assume that the challenge set of the protocols we consider isf 0; 1gk .

Theorem 7.2 (sHVZK implies HVZK). If a � -protocol satis�es sHVZK, it also
satis�es HVZK.

Proof. A HVZK simulator S0 can be built from the sHVZK simulator S:

Simulator S0(x) : c $ f 0; 1gk ; (r; s)  S(x; c); return (r; c; s)

The fact that S0 perfectly simulates conversations of the protocol can be proved by
means of the following sequence of games:
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Protocol(x; w) ' f x g^ R(x;w )
f r;c;s g c $ f 0; 1gk ; Protocol(x; w; c)

' f x g^ R(x;w )
f r;c;s g c $ f 0; 1gk ; (r; s)  S(x; c)

' f x g^ R(x;w )
f r;c;s g (r; c; s)  S0(x)

The �rst and last equivalences are easily proved by inliningprocedure calls using the
tactic inline , and reordering instructions in the resulting programs using swap. To
prove the second equivalence, the tacticeqobs_hdis used to get rid of the instruction
c $ f 0; 1gk that is common to both games; the resulting goal matches exactly the
de�nition of sHVZK for S. ut

In a sense,sHVZK is a stronger property than HVZK, because a protocol satisfy-
ing sHVZK can be shown to satisfyHVZK, while the converse is not generally true.
However, from every protocol(P; V) that satis�es HVZK it is possible to construct
a protocol (P0; V0) that satis�es sHVZK and is nearly as e�cient as the original
protocol:

P0
1(x; w) def= (r; state )  P1(x; w); c0 $ f 0; 1gk ; return (( r; c0); (state; c0)))

P0
2(x; w; (state; c0); c) def= s  P2(x; w; state; c � c0); return s

V0
1(x; (r; c0)) def= c  V1(x; r ); return (c � c0)

V0
2(x; (r; c0); c; s) def= b  V2(x; r; c � c0; s); return b

Essentially, the construction creates a new protocol for which HVZK and sHVZK
coincide. The di�erence is that in the new protocol the challenge that the veri�er
chooses is xor-ed with a random bitstring sampled by the prover at the beginning
of the protocol.

Theorem 7.3 (sHVZK from HVZK). If a protocol (P; V) is a � -protocol as
in De�nition 7.1 but satisfying HVZK instead of sHVZK, then the protocol (P0; V0)
de�ned above is a� -protocol.

Proof.

Completeness

Follows easily from the completeness of protocol(P; V) and the absorption property
of the exclusive or operator, i.e.,(c � c0) � c0 = c.

Special Honest Veri�er Zero-Knowledge

The following is a sHVZK simulator for the protocol

Simulator S0(x; c) : ( r̂; ĉ; ŝ)  S(x); return (( r̂; c � ĉ); ŝ)

(The variables of the original protocol are decorated with ahat.) We prove this by
means of a sequence of program equivalences,
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Protocol0(x; w; c) ' f x;c g^ R(x;w )
f r;c;s g Protocol(x; w); r  (r̂; c � ĉ); s  ŝ

' f x;c g^ R(x;w )
f r;c;s g (r̂; ĉ; s)  S(x); r  (r̂; c � ĉ)

' f x;c g^ R(x;w )
f r;c;s g (r; s)  S0(x; c)

The �rst and last equivalences are proved without much di�cu lty using the program
transformation tactics described in Chapter 3, while the second can be reduced to
the HVZK of S using the alloc and eqobs_tl tactics to simplify the goal.

Soundness

From a conversation (( r; c0); (c � c0); s) of (P0; V0) a conversation (r; c; s) of the
original protocol can be trivially recovered. Thus, the following knowledge extractor
proves special soundness of(P0; V0):

KE0(x; (r; c0); c1; c2; s1; s2) : w  KE(x; r; c 0 � c1; c0 � c2; s1; s2); return w

ut

7.2 Sigma Protocols Based on Special Homomorphisms

An important class of � -protocols are the so-called� � -protocols, that prove knowl-
edge of a preimage under a homomorphism. The Schnorr protocol [Schnorr 1991],
one of the most archetypal zero-knowledge proofs, is an instance of a� � -protocol
that proves knowledge of a discrete logarithm in a cyclic group, i.e. the homo-
morphism is in this case exponentiation,� (x) = gx , where g is a generator of the
group.

Our formalization of � � -protocols is constructive. We provide a functor that,
given a homomorphism� together with proofs that it satis�es certain properties,
builds a concrete � -protocol for proving knowledge of a preimage under� . This
protocol comes with proofs of completeness, soundness, andsHVZK. Thus, all that
it takes to build an instance of a � � -protocol is to specify a homomorphism and
prove that it has the necessary properties. In this way, we give several examples
of � � -protocols, including the Schnorr, Guillou-Quisquater and Feige-Fiat-Shamir
protocols. Although using the � � construction spares us the hassle of proving each
time the properties in De�nition 7.1, these instantiations remain non-trivial because
one needs to formalize the homomorphisms themselves, whichin turn requires to
give representations of the groups over which they are de�ned.

In the remaining of this subsection we let(G; � ) be a �nite additive group and
(H; 
 ) a multiplicative group.

De�nition 7.4 ( � � -protocol). Let � : G ! H be a homomorphism, and de�ne
R def

= f (x; w) j x = � (w)g. The � � -protocol for relation R with challenge setC � N
is the � -protocol (P; V) de�ned as follows:
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P1(x; w) def
= y $ G; return (� (y); y)

P2(x; w; y; c) def
= return (y � cw)

V1(x; r ) def
= c $ C; return c

V2(x; r; c; s) def= return (� (s) = r 
 xc)

It can be shown that the above protocol satis�es the properties of a� -protocol when
C = f 0; 1g. However, a cheating prover could convince the veri�er with probability
1=2; this probability may be reduced to 1=2n (at the cost of e�ciency) by repeating
the protocol n rounds. We will see that a certain class of homomorphisms de�ned
below admits a much larger challenge set, and thus achieves alower soundness error
in a single execution of the protocol.

De�nition 7.5 (Special homomorphism). An homomorphism � : G ! H is
special if there exists a valuev 2 Z n f 0g (called special exponent) and a PPT
algorithm that given x 2 H computesu 2 G such that � (u) = xv .

To formalize � � -protocols, we extended the language ofCertiCrypt with types for
the groups G; H and operators for computing the group operation, exponentia-
tion/product, and inverse; we also added operators� (�), u(�), and a constant ex-
pressionv denoting the special exponent of the homomorphism as in De�nition 7.5.
In addition, we wrote an expression normalizer that simpli� es arithmetic expres-
sions by applying the homomorphic property of� ; normalization is done as part of
the ep tactic.

A � � -protocol built from a special homomorphism admits as a challenge set
any natural interval of the form [0::c+ ], wherec+ is smaller than the smallest prime
divisor of the special exponentv.

Theorem 7.6 ( � � -protocols for special homomorphisms). If � is special and
c+ is smaller than any prime divisor of the special exponentv, then the protocol in
De�nition 7.4 is a � -protocol with challenge setC = [0 ::c+ ].

Proof.

Completeness

We must prove that a honest prover always succeeds in convincing a veri�er, i.e.

8m: R(m(x); m(w)) = ) Pr [Protocol; m : b = true] = 1

Note that this can be reformulated in terms of a program equivalence as follows

Protocol(x; w) ' R(x;w )
f bg b  true

To prove this, we inline all procedure calls in the protocol and simplify the re-
sulting program performing expression propagation, normalization, and dead code
elimination. We use the following proof script:

inline P1; inline P2; inline V1; inline V2; ep; deadcode:
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The resulting goal has the form

y $ G; c $ [0::c+ ]; b  (� (y) 
 � (w)c = � (y) 
 xc) ' � (w )= x
f bg b  true

We use the tactic ep_eq x � (w) to simplify the last instruction in the game on the
left hand side to b  true, tactic deadcodeto remove the �rst two instructions that
are no longer relevant, andeqobs_in to conclude.

Protocol (x; w; c) :
(r; state )  P1(x; w);
s  P2(x; w; state; c );
b  V2(x; r; c; s )

inline_l P1;
inline_l P2;
ep; deadcode

1

y $ G;
r  � (y);
s  y � cw

' f x;w;c g^ R ( x;w )
f r;c;s g

s0 $ G;
y  s0 � � cw;
s  y � cw;
r  � (y)

s0 $ G;
s  s0;
r  � (s0) 
 � (w) � c 4

alloc_r s s0

s $ G;
r  � (s) 
 � (w) � c

ep; deadcode
3

' f x;w;c g^ R ( x;w )
f r;c;s g

6

s0 $ G;
r  � (s0) 
 x � c ;
s  s0

sinline_r S

Simulator (x; c) :
(r; s )  S(x; c)

alloc_r s0 s;
ep_eq_r x � (w);
swap;
eqobs_in

2

5

swap;
eqobs_tl ;
alloc_l y s0;
clean_nm;
apply sum_otp

Fig. 7.2. A game-based proof that S is a sHVZK simulator for the � � -protocol in Theo-
rem 7.6.

Special Honest Veri�er Zero-Knowledge

The following is a sHVZK simulator for the protocol:

Simulator S(x; c) : s $ G; r  � (s) 
 x � c; return (r; c; s)

A proof that S perfectly simulates conversations of the protocol is illustrated in
Figure 7.2; we brie�y explain the numbered steps in the �gure.

1. Similarly to the proof above, we inline calls toP1 and P2, and simplify the goal
using tactics ep and deadcode.
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2. We introduce an intermediate game using the transitivity of observational equiv-
alence. To prove that the new game is observationally equivalent to the previous
one, we �rst reorder the instructions using swapto obtain a common su�x which
we then remove using the tacticeqobs_tl . The resulting goal is

` y $ G ' f x;w;c g^ R(x;w )
f y;w;c g s0 $ G; y  s0 � � cw

Since variablesw and c are not modi�ed, we can remove them from the output
set using tactic clean_nm. We next use tactic alloc y s0 to sample s0 instead
of y in the game on the left, and we weaken the pre-condition totrue, which
results in the goal

` s0 $ G; y  s0 ' f yg s0 $ G; y  s0 � � cw

This equivalence holds because� cw acts as a one-time pad; we have proved
this as a lemma calledsum_otp that we apply to conclude the proof.

3. Using ep, we propagate throughout the code the value assigned toy and then
remove the assignment usingdeadcode. The expression normalizer automati-
cally simpli�es (s0 � � cw) � cw to s0, and � (s0 � � cw) to � (s0) 
 � (w)� c using
the homomorphic property of � .

4. We introduce a new intermediate game; to prove that is equivalent to the pre-
vious one, we allocate variables into s0; the resulting game is identical to the
one on the left hand side.

5. We substitute variable s for s0 in the game on the right hand side of the equiv-
alence, and use the pre-conditionR(x; w)�which boils down to x = � (w)�to
substitute x by � (w). The resulting games are identical modulo reordering of
instructions.

6. We conclude by inlining the call to S in the simulation.

Soundness

Soundness requires the existence of an algorithmKE that given two accepting con-
versations(x; r; c 1; s1), (x; r; c 2; s2), with c1 6= c2, e�ciently computes a w such that
x = � (w). We propose the following knowledge extractor:

KE(x; c1 ; c2 ; s1 ; s2) :
(a; b; d)  extended_ gcd(c1 � c2 ; v);
w  a(s1 � � s2) � b u(x);
return w

where extended_ gcd e�ciently implements the extended Euclidean algorithm. Fo r
integers a; b, extended_ gcd(a; b) computes a triple of integers(x; y; d) such that d
is the greatest common divisor ofa and b, and x; y satisfy the Bézout's identity

ax + by = gcd(a; b) = d

Since all computations done by the knowledge extractor can be e�ciently imple-
mented, KE is a PPT algorithm. We have to prove as well that KE computes a
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preimage of the public input x. For two accepting conversations(x; r; c 1; s1) and
(x; r; c 2; s2), we have

� (s1) = r 
 xc1 ^ � (s2) = r 
 xc2

and thus
xc1 � c2 = � (s1 � � s2) (7.1)

Furthermore, since � is special we can e�ciently compute u such that xv = � (u).
The triple (a; b; d) given by the extended Euclidean algorithm satis�es the Bézout's
identity

a(c1 � c2) + bv = gcd(c1 � c2; v) = d (7.2)

Both c1 and c2 are bounded byc+ , which is in turn smaller than the smallest prime
that divides v. Thus, no divisor of jc1 � c2j can divide v and

d = gcd(c1 � c2; v) = 1

In addition, since � is a homomorphism, from (7.1) and (7.2) we conclude

� (w) = � (a(s1 � � s2) � bu) = xa(c1 � c2 ) 
 xbv = x

ut

7.2.1 Concrete Instances of Sigma-Phi Protocols

We have formalized several� � -protocols using the functor described in the pre-
vious section. For each protocol, we specify the groupsG; H and the underlying
special homomorphism� : G ! H , and provide appropriate interpretations for the
operator u(�) and the constant special exponentv. Table 7.1 summarizes all the
protocols that we have formalized.

Table 7.1. Special homomorphisms in selected� � -protocols. In the table, Z+
q stands for

the additive group of integers modulo q, Z �
p for the multiplicative group of integers modulo

p; N is an RSA modulus and e a public RSA exponent coprime with ' (N ).

Protocol G H � u v
Schnorr Z+

q Z �
p x 7! gx x 7! 0 q

Okamoto (Z+
q ; Z+

q ) Z �
p (x1 ; x2) 7! gx 1

1 
 gx 2
2 x 7! (0; 0) q

Fiat-Shamir Z �
N Z �

N x 7! x2 x 7! x 2
Guillou-Quisquater Z �

N Z �
N x 7! xe x 7! x e

Feige-Fiat-Shamir f� 1; 1g � Z �
N Z �

N (s; x) 7! s x2 x 7! (1; x) 2

The Schnorr [1991] and Okamoto [1993] protocols are based onthe discrete
logarithm problem. For prime numbers p and q such that q divides p� 1, a Schnorr
group is a multiplicative subgroup of Z�

p of order q with generator g. A � -protocol
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for proving knowledge of discrete logarithms in the Schnorrgroup is obtained by
instantiating the construction of De�nition 7.4 with the ho momorphism

� : Z+
q ! Z�

p
� (x) = gx

Since the orderq of the Schnorr group is known, it su�ces to take q as the special
exponent of the homomorphism, andu(x) = 0 for all x 2 Z+

q . The Okamoto protocol
is similar to Schnorr protocol but it works with two Schnorr s ubgroups of Z�

p with
generatorsg1 and g2, respectively (it can be naturally generalized to any number
of generators). In this case� maps a pair (x1; x2) to gx 1

1 
 gx 2
2 .

Let N be an RSA modulus with prime factors p and q, and let e be a public
exponent;e must be co-prime with the totient ' = ( p� 1)(q� 1) (i.e. gcd(e; ' (N )) =
1). The Guillou-Quisquater [Guillou and Quisquater 1988], Fiat-Shamir [Fiat and
Shamir 1987], and Feige-Fiat-Shamir [Feige et al. 1988] protocols are based on the
di�culty of solving the RSA problem: given N , e and y � xe mod N , compute x,
the eth -root of y modulo N .

The Guillou-Quisquater protocol is obtained by taking

� : Z�
N ! Z�

N
� (x) = xe

The Fiat-Shamir protocol is obtained as a special case whene = 2 . The Feige-Fiat-
Shamir is obtained by taking

� : f� 1; 1g � Z�
N ! Z�

N
� (s; x) = s x2

Remark

We note that our results hold independently of any computational assumption.
Certainly, it is the di�culty of inverting the underlying ho momorphism what makes
a � � -protocol interesting, but this is inessential for establishing the properties we
prove about the protocol.

7.2.2 Composition of Sigma-Phi Protocols

Let � 1 : G1 ! H1 and � 2 : G2 ! H2 be two special homomorphisms with special
exponentsv1; v2 and associated algorithmsu1; u2, respectively. We give below two
useful ways of combining the� � -protocols induced by these homomorphisms.

Theorem 7.7 (Direct product of special homomorphisms). The following
homomorphism from the direct product ofG1 and G2 to the direct product of H1

and H2 is a special homomorphism:

� : G1 � G2 ! H1 � H2

� (x1; x2) def= (� 1(x1); � 2(x2))
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Proof. It su�ces to take

v def= lcm(v1; v2)
u(x1; x2) def= (u1(x1)v=v 1 ; u2(x2)v=v 2 )

Indeed,
� (u(x1; x2)) = ( � 1(u1(x1)v=v 1 ); � 2(u2(x2)v=v 2 ))

= ( xv1 v=v 1
1 ; xv2 v=v 2

2 )
= ( x1; x2)v

ut
This yields an e�ective means of AND-combining assertions proved by � � -

protocols. The result generalizes the protocol of Maurer [2009,Theorem 6.2]; we do
not require that the special exponent be the same.

Theorem 7.8 (Equality of preimages). Suppose that the domain of both homo-
morphisms is the same,G1 = G2 = G, v1 = v2, and u1; u2 are such that

8x1 2 H1; x2 2 H2: u1(x1) = u2(x2)

Then, the following homomorphism fromG to the direct product of H1 and H2 is
a special homomorphism:

� : G ! H1 � H2

� (x) def= (� 1(x); � 2(x))

Proof. Take v def= v1 and u(x1; x2) def= u1(x1),

� (u(x1; x2)) = ( � 1(u1(x1)) ; � 2(u2(x2)))
= ( xv1

1 ; xv2
2 )

= ( x1; x2)v

ut
We can use this latter theorem to construct a� -protocol that proves correctness

of Di�e-Hellman keys. Given a group with prime order q and a generatorg, this
amounts to prove that triples of group elements of the form (�; �;  ) are Di�e-
Hellman triples, i.e. that if � = ga and � = gb, then  = gab. We instantiate the
above construction for homomorphisms� 1(x) = gx , and � 2(x) = � x . Knowledge
of a preimagea of (�;  ) implies that (�; �;  ) is a Di�e-Hellman triple (and thus
that  is a valid Di�e-Hellman shared key).

7.3 Sigma Protocols Based on Claw-Free Permutations

This section describes a general construction in the same �avor as the � � con-
struction discussed in the previous section, but based on pairs of claw-free permu-
tations [Cramer 1996] rather than on special homomorphisms.
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De�nition 7.9 (Claw-free permutation pair). A pair of trapdoor permutations
f = ( f 0; f 1) on the same domainD is claw-free if it is unfeasible to computex; y 2 D
such that f 0(x; pk) = f 1(y; pk).

Given a claw-free permutation pair f , and a bitstring a 2 f 0; 1gk , we de�ne

f [a](b) def= f a1 (f a2 (: : : (f ak (b)) : : : ))

where ai denotes thei th bit of a.

Theorem 7.10 ( � -protocol based on claw-free permutations). Let (f 0; f 1)
be a pair of claw-free permutations onD and let R be such that

R(pk; sk) () 8 x: f � 1
0 (sk; f 0(pk; x)) = x ^ f � 1

1 (sk; f 1(pk; x)) = x

The following protocol is a � -protocol for relation R:

P1(pk; sk) def
= y $ D ; return (y; y)

P2(pk; sk; y; c) def
= return f � 1

[c] (sk; y)

V1(pk; r) def= c $ f 0; 1gk ; return c

V2(pk; r; c; s) def
= return

�
f [c](pk; s) = r

�

except that it might not satisfy the knowledge soundness property.

Proof.

Completeness

The proof follows almost the same structure as the completeness proof for � � -
protocols. After inlining procedure calls in the protocol, we are left with the goal

b  f [c](pk; f � 1
[c] (sk; y)) = y ' R(pk;sk )

f bg b  true

We use the fact that the pair (pk; sk) is in R to prove that f [c](pk; f � 1
[c] (sk; y)) = y

by induction on c.

Special Honest Veri�er Zero-Knowledge

The following is a sHVZK simulator for the protocol,

Simulator S(pk; c) : s $ D ; r  f [c](pk; s); return (r; s)

To prove that

Protocol(pk; sk; c) ' f pk;c g^ R(pk;sk )
f r;c;s g (r; s)  S(pk; c)

we inline every procedure call in both games and perform expression propagation
and dead code elimination, we are left with the following goal:
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` r $ D ; s  f � 1
[c] (sk; r ) ' f pk;sk;c g

f r;s g r  f [c](pk; s)

which is provable from the fact that f is a permutation pair. ut
We observed that the above protocol does not necessarily satisfy the special

soundness property. Instead, it satis�es a property known as collision intractability :
no e�cient algorithm can �nd two accepting conversations wi th di�erent challenges
but same commitment (a collision) with non-negligible probability. Interactive proof
protocols that are complete, sHVZK but only satisfy collision intractability have
important applications as signature protocols.

Theorem 7.11. It is unfeasible to �nd a collision for the protocol in Theorem 7.10.

Proof. By contradiction. Assume two accepting conversations(r; c1; s1), (r; c2; s2)
for a public input pk with c1 6= c2. We show that it is possible to e�ciently compute
a claw (b; b0) such that f 0(b) = f 1(b0). Since the two conversations are accepting,

f [c1 ](pk; s1) = f [c2 ](pk; s2) = r

The following algorithm computes a claw

�nd _ claw(s1; c1; s2; c2) :
if head(c1) = head(c2)
then �nd_ claw(tail(c1); s1; tail(c2); s2)
else if head(c1) = 0

then(f [tail (c1 )] (pk; s1); f [tail (c2 )] (pk; s2))
else(f [tail (c2 )] (pk; s2); f [tail (c1 )] (pk; s1))

The algorithm executes in polynomial-time provided permutations f 0 and f 1 can
be evaluated in polynomial time, and c1; c2 are polynomially bounded. For a poly-
nomially bounded challenge set, this contradicts the assumption that (f 0; f 1) is
claw-free. ut

7.4 Combination of Sigma-Protocols

There are two immediate, but essential, ways of combining two � -protocols(P1; V 1)
and (P2; V 2) with knowledge relations R1 and R2 respectively: AND-combination,
and OR-combination. The former allows a prover to prove knowledge of witnesses
w1; w2 such that R1(x1; w1) and R2(x2; w2). The latter allows a prover to prove
knowledge of a witnessw such that either R1(x1; w) or R2(x2; w), without reveal-
ing which is the case. This can be naturally extended to proofs of any monotone
Boolean formula by nested combination (although there exist a direct, more e�cient
construction based on secret-sharing schemes, cf. [Cramer1996]). Even though sim-
ple, such constructions are incredibly powerful and form the basis of many practical
protocols, like secure electronic voting protocols.
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7.4.1 AND-Combination

Two � -protocols can be combined into a� -protocol that proves simultaneous
knowledge of witnesses for both underlying knowledge relations, i.e. a � -protocol
with a knowledge relation:

R def= f ((x1; x2); (w1; w2)) j R1(x1; w1) ^ R2(x2; w2)g

We have formalized a functor AND, that combines two public-coin � -protocols
(P1; V 1) and (P2; V 2) in this form. Without loss of generality, we assume that
both protocols mandate that honest veri�ers choose challenges uniformly from a
set of bitstrings of a certain length k. The construction is straightforward; the
combination is essentially a parallel composition of the two sub-protocols using the
same randomly chosen challenge:

P1(( x1 ; x2); (w1 ; w2)) def=
(r 1 ; state1)  P1

1(x1 ; w1);
(r 2 ; state2)  P2

1(x2 ; w2);
return (( r 1 ; r 2); (state1; state2))

P2(( x1 ; x2); (w1 ; w2); state1; state2 ; c) def=
s1  P1

2(x1 ; w1 ; state1; c);
s2  P2

2(x2 ; w2 ; state1; c);
return (s1 ; s2)

V1(( x1 ; x2); (r 1 ; r 2)) def= c $ f 0; 1gk ; return c

V2(( x1 ; x2); (r 1 ; r 2); c; (s1 ; s2)) def=
b1  V1

2(x1 ; r 1 ; c; s1)
b2  V2

2(x2 ; r 2 ; c; s2)
return (b1 = true ^ b2 = true)

Observe that V1 is not built from V1
1 and V2

1. The reason for this is that in order to
prove soundness, two runs of the protocol for the same publicinput x with the same
commitment r , but with di�erent challenges c 6= c0, must yield two runs of each
of the sub-protocols with distinct challenges. If the challenge for the main protocol
were built from the challenges computed byV1

1 and V2
1, e.g. by concatenating them,

we would not be able to conclude that the challenges in each pair of conversations
extracted for the sub-protocols are di�erent�one could only conclude that this
is the case for one of the sub-protocols. Instead, we make useof the public-coin
property and simply draw in V1 a new random challenge that is used in both sub-
protocols. This solves the above problem, but also requiresthat the sub-protocols
satisfy the special honest veri�er zero-knowledge property, since we need to be able
to simulate the sub-protocols for any �xed challenge.

Since AND combination essentially amounts to pairing the two sub-protocols
while respecting the structure of a� -protocol, all proofs have the same general form:
procedure calls are �rst inlined, and then the goal is manipulated using program
transformations to put it in a form where the properties of th e sub-protocols can be
applied to conclude. We give below a proof sketch ofsHVZK and special soundness;
a more detailed proof of these properties and a proof of completeness can be found
in [Barthe et al. 2010b].
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Special Honest-Veri�er Zero-Knowledge

The sHVZK simulator for the protocol simply runs the simulators of the sub-
protocols to obtain a conversation for each sub-protocol with the same challengec,
the conversations are then combined to obtain a conversation of the main protocol:

Simulator S(( x1 ; x2); c) :
(r 1 ; s1)  S1(x1 ; c);
(r 2 ; s2)  S2(x2 ; c);
return(( r 1 ; r 2); (s1 ; s2))

Soundness

Soundness requires us to give a PPT knowledge extractor thatcomputes a witness
for the knowledge relationR from two accepting runs of the protocol with di�erent
challenges but the same commitment. This amounts to computing a witness for each
of the sub-protocols and can be done using the correspondingknowledge extractors
as follows:

KE((x1 ; x2); (r 1 ; r 2); c; c0; (s1 ; s2); (s0
1 ; s0

2)) :
w1  KE1(x1 ; r 1 ; c; c0; s1 ; s0

1);
w2  KE2(x2 ; r 2 ; c; c0; s2 ; s0

2);
return (w1 ; w2)

Note that an accepting conversation of the main protocol yields an accepting conver-
sation for each one of the sub-protocols. Moreover, since the challenge of the main
protocol is used as the challenge in both sub-protocols andc 6= c0, the extracted
conversations have di�erent challenges. Concretely, from

Pr [b  V2((x1; x2); (r1; r2); c ;(s1; s2)) ; m : b = true] = 1
Pr [b  V2((x1; x2); (r1; r2); c0; (s0

1; s0
2)) ; m : b = true] = 1

we can prove that for i = 1 ; 2,

Pr
�
wi  KEi (x i ; r i ; c; c0; si ; s0

i ); m : Ri (x i ; wi )
�

= 1

from the soundness of the sub-protocols and from the fact that

Pr
�
bi  Vi

2(x i ; r i ; c ; si ); m : bi = true
�

= 1
Pr

�
bi  Vi

2(x i ; r i ; c0; s0
i ); m : bi = true

�
= 1

ut

7.4.2 OR-Combination

Two � -protocols can also be combined to obtain a protocol that proves knowledge
of a witness for the knowledge relation of one of the sub-protocols, but without
revealing which. The construction relies on the ability to simulate accepting runs;
the basic idea is that the prover runs the real protocol for which it knows a witness,
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and uses the simulator to generate a run of the other protocol. The knowledge
relation suggested by, e.g. Damgård [2010],

R̂ def= f ((x1; x2); w) j R1(x1; w) _ R2(x2; w)g

su�ers from placing unrealistic demands on the simulator. As pointed out by Cramer
[1996], it is important to allow the simulator to fail on an in put x 62dom(R). How-
ever, in order to prove completeness for the above relation,the simulator must be
able to perfectly simulate outside the domain of the respective knowledge relation.
Instead, we can prove completeness (andsHVZK) of the combination with respect
to a knowledge relation whose domain is restricted to the Cartesian product of the
domains of the knowledge relations of the sub-protocols, i.e.

R def=

�
((x1; x2); w)

�
�
�
�
(R1(x1; w) ^ x2 2 dom(R2)) _
(R2(x2; w) ^ x1 2 dom(R1))

�

Unfortunately, we cannot prove soundness with respect toR, we can only prove it
with respect to R̂. The reason for this is that an accepting run of the combined
protocol only guarantees the existence of a witness for the public input of one of
the protocols, the simulation of the other protocol may succeed even if the input
is not in the domain of the respective relation. Otherwise said, from two accepting
runs of the combined protocol with distinct challenges we might not be able to
extract two accepting runs with distinct challenges for each of the sub-protocols;
we can only guarantee we can do that for one of them. Observe that we do not
really lose anything by proving completeness with respect to the smaller relation
R. If we admitted pairs (x1; x2) as public input where one component does not
belong to the domain of the corresponding knowledge relation, we would not be
able to say anything about the success of the simulator. The simulator might as
well fail, trivially revealing that the prover could not hav e known a witness for the
corresponding input, and rendering the protocol pointlessfor such inputs.

Compared to the AND combination, the OR combination is harder to �t into
the structure of a � -protocol. The reason for this is that the �rst phase of the
prover needs to use the simulator of one of the sub-protocols, which results in a
full (accepting) conversation that has to be passed over to the second phase of
the prover. Given R1(x1; w), the OR prover runs the prover of the �rst protocol
and the simulator of the second, and returns as a commitment apair with the
commitments of each protocol; it passes over in the state thechallenge and the
reply of the simulated conversation,
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P1(( x1; x2); w) def=
if (x1 ; w) 2 R1 then

(r 1 ; state1)  P1
1(x1 ; w);

c2 $ f 0; 1gk ;
(r 2 ; s2)  S2(x2 ; c2);
state  (state1; c2 ; s2)

else
(r 2 ; state2)  P2

1(x2 ; w);
c1 $ f 0; 1gk ;
(r 1 ; s1)  S1(x1 ; c1);
state  (state2; c1 ; s1)

return (( r 1 ; r 2); state)

Above, the test (x1; w) 2 R1 is an encoding of the fact that the prover knows to
which knowledge relation corresponds the witnessw, and thus which protocol it
can run for real, while simulating the other one. The commitment (r1; r2) is passed
along to the veri�er that simply replies by returning a rando mly chosen bitstring
to the prover, the combination is a public-coin protocol,

V1((x1; x2); (r1; r2)) def= c $ f 0; 1gk ; return c

Assume without loss of generality that R1(x1; w). In the second phase the prover
constructs the challenge for the �rst protocol by xor-ing th e challengec of the OR
protocol with the challenge used in the simulation of the second protocol in the �rst
phase. It then runs the second phase of the prover of the �rst protocol to compute
a reply. The result of the second phase is constructed from the challenges for each
protocol and the prover replies (the ones coming from the simulated protocol are
recovered from the state):

P2(( x1 ; x2); w; (state; c0; s); c) def=
if (x1 ; w) 2 R1 then

state1  state; c2  c0; s2  s;
c1  c2 � c;
s1  P1

2(x1 ; w; state1; c1)
else

state2  state; c1  c0; s1  s;
c2  c1 � c;
s2  P2

2(x2 ; w; state2; c2)
return (( c1 ; s1); (c2 ; s2))

The veri�er accepts a conversation when the runs of both protocols are accepting
and the challenge is the xor of the challenges used in each of the combined protocols,

V2(( x1 ; x2); (r 1 ; r 2); c; (( c1 ; s1); (c2 ; s2))) def=
b1  V1

2(x1 ; r 1 ; c1 ; s1);
b2  V2

2(x2 ; r 2 ; c2 ; s2);
return (c = c1 � c2 ^ b1 = true ^ b2 = true)

Completeness

The proof is slightly more involved than the proof for the AND combination, since
only one of the protocols is run for real, while the other is just simulated, and this
depends on the knowledge of the prover. Thus, the proof is split into two cases:
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� case (x1; w) 2 R1: the outline of the proof is as follows:

Protocol((x1; x2); w) ' Protocol1(x1; w); c2 $ f 0; 1gk ; (r2; s2)  S2(x2; c2)
' Protocol1(x1; w); Protocol2(x2; w0)

The �rst equivalence is immediate from inlining procedure calls and simpli�ca-
tion. The second equivalence follows from the fact that9w0: R2(x2; w0) and the
sHVZK property of the second protocol. The proof concludes by application of
the completeness property of each of the sub-protocols.

� case (x2; w) 2 R2: Idem.

Special Honest-Veri�er Zero-Knowledge

The simulator for the OR combination is easily built from the simulators of the
sub-protocols:

Simulator S(( x1; x2); c) :
c2 $ f 0; 1gk ;
c1  c � c2 ;
(r 1 ; s1)  S1(x1 ; c1);
(r 2 ; s2)  S2(x2 ; c2);
return (( r 1 ; r 2); (( c1 ; s1); (c2 ; s2)))

As before, the proof is split into two cases:

� case (x1; w) 2 R1:

Protocol((x1; x2); w) ' Protocol1(x1; w); S2(x2)
' S1(x1); S2(x2)
' S((x1; x2); c)

Where the �rst and last steps are immediate from inlining, and simpli�cation,
whereas the second step is a direct application of theHVZK property of S1 (which
follows from sHVZK by Theorem 7.2).

� case (x2; w) 2 R2: Idem.

Soundness

(With respect to R̂). Unlike the AND combination, the OR combination does not
have the property that runs with distinct challenges guarantee that the challenges
used in the sub-protocols are also distinct. This is not as problematic as in the case
of the AND combination, since it su�ces to compute a w such that either R1(x1; w)
or R2(x2; w). Furthermore, from

c = c1 � c2 6= c0 = c0
1 � c0

2

we have eitherc1 6= c0
1 or elsec1 = c0

1, in which case necessarilyc2 6= c0
2. Thus, the

knowledge extractor simply needs to do a case analysis:
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KE((x1 ; x2); (r 1 ; r 2); c; c0;
(( c1 ; s1); (c2 ; s2)) ; (( c0

1 ; s0
1); (c0

2 ; s0
2))) :

if c1 6= c0
1 then

w  KE1(x1 ; r 1 ; c1 ; c0
1 ; s1 ; s0

1)
else

w  KE2(x2 ; r 2 ; c2 ; c0
2 ; s2 ; s0

2)
return w

Assume two accepting runs of the combined protocol with the same commitment
and c 6= c0:

((x1; x2); (r1; r2); c;((c1; s1); (c2; s2)))
((x1; x2); (r1; r2); c0; ((c0

1; s0
1); (c0

2; s0
2)))

We have to establish that for an i 2 1; 2,

Pr
�
wi  KEi (x i ; r i ; ci ; c0

i ; si ; s0
i ) : Ri (x i ; wi )

�
= 1

depending on whetherc1 6= c0
1 or c1 = c0

1 ^ c2 6= c0
2,

� case c1 6= c0
1: From the special soundness ofProtocol1,

Pr
�
w1  KE1(x1; r1; c1; c0

1; s1; s0
1) : R1(x1; w1)

�
= 1

� case c1 = c0
1 (and thus c2 6= c0

2): From the special soundness ofProtocol2

Pr
�
w2  KE2(x2; r2; c2; c0

2; s2; s0
2) : R2(x2; w2)

�
= 1

ut

7.5 Related Work

Our work participates to an upsurge of interest in � -protocols, and shares some
motivations and commonalities with recently published papers. Speci�cally, our ac-
count of � � -protocols coincides with Maurer's [2009] unifying treatment of proofs
of knowledge for preimages of group homomorphisms. Concretely, Maurer exhibits a
main protocol that uses a group homomorphism�which in our set ting corresponds
to the de�nition of the module of � � -protocols in Section 7.2�and shows (in his
Theorem 3) that under suitable hypotheses the main protocolis a � -protocol. He
gives several instances of the main protocol by picking suitable group homomor-
phisms and showing that they satisfy these hypotheses.

Our work is also closely connected to the recent e�ort of Bangerter et al. [2008,
2010] to design and implement e�cient zero-knowledge proofs of knowledge. They
provide both a set of su�cient conditions on a homomorphism � under which
the corresponding � � -protocol can be viewed as a� -protocol [Bangerter et al.
2008,Theorem 1], and a generalization that allows to consider sets of linear rela-
tions among preimages of group homomorphisms [Bangerter etal. 2008,Theorem
2]. The latter result is used to justify the soundness of a compiler that generates
e�cient code from high-level descriptions of protocols. As future work, the authors
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of [Bangerter et al. 2008] mention that they plan to make their compiler certifying,
so that it would generate proofs accompanying the code. Doing so from scratch re-
mains a daunting task. By building on CertiCrypt, our formalization could be readily
used as a stepping stone for a modular certifying compiler, in which (high-level, un-
optimized) code is certi�ed, and then compiled to e�cient co de using a certi�ed
or certifying compiler; see e.g. [Barthe et al. 2009b; Leroy2006] for an instance of
applying ideas from certi�ed/certifying compilation to cr yptography.

Cryptographic primitives need not only be secure; they mustalso be used cor-
rectly. In a series of papers, Backes, Hritcu, and Ma�ei [2008b]; Backes, Ma�ei,
and Unruh [2008c] develop sound analysis methods for protocols that use zero-
knowledge proofs, and apply their analyses to verify the authentication and secrecy
properties of the Direct Anonymous Attestation Protocol. One extremely ambitious
objective would be to use their results, which complement ours, to fully certify the
security of the protocol in the computational model. Intermediate results would
involve formalizing computational soundness results [Abadi and Rogaway 2002;
Cortier and Warinschi 2005], which represents a substantial amount of work on its
own.

7.6 Perspectives

We have presented a formalization of� -protocols in CertiCrypt. The highlights
of our formalization are its generic account of the class of� � -protocols and the
detailed treatment of the AND/OR composition. Our work comp lements recent
advances in the �eld, and takes a �rst but important step towa rds formalizing a
rich theory of zero-knowledge proofs. In our opinion, and judging by the myriad of
small variations in de�nitions we have found in the literatu re, this e�ort would be
worth pursuing for a �eld that strives for de�nitional clari ty and consistency.

Compared to other applications of CertiCrypt, like the veri�cation of security
proofs of encryption and signature schemes discussed in previous chapters, the
formalization presented here imposes challenges of a di�erent nature to the user.
In contrast to earlier case studies, for which we have developed a mature set of
techniques that mechanize most of the reasoning patterns appearing in proofs, we
found that the formalization of � -protocols does not require as much complex
reasoning, but is more demanding with respect to the compositionality of proofs.
This led us to revise some design choices ofCertiCryptand has given us ideas on how
to improve the framework so that results can be reused and composed more easily.
For instance, when composing proofs of observational equivalence statements the
user often needs to manually rename variables to match the names of the context
where the proof is being reused; currently the user has to appeal to the alloc tactic
to do this, but a simply heuristic may su�ce in most cases.

We can build on the existing formalization to verify other im portant results
about zero-knowledge proofs. These include other means of composing protocols:
sequential [Goldreich and Oren 1994] and concurrent [Damgård 2000; Garay et al.
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2006] composition; transforming public-coin zero-knowledge proofs in general zero-
knowledge proofs [Goldreich 2002], or di�erent formulations like non-interactive
zero-knowledge proofs [Blum et al. 1988] or properties, i.e. statistical zero-knowledge
and computational zero-knowledge instead of perfect zero-knowledge. Moreover,
� -protocols form the base for a number of important and intriguing protocols
for electronic voting schemes [Cramer 1996], identity schemes [Cramer 1996], and
commitment schemes [Cramer 1996; Damgård 1990]. All are prime targets for future
formalizations.
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Related Work and Conclusion

8.1 Related Work

Cryptographic protocol veri�cation is an established area of formal methods, and
a wealth of automated and deductive methods have been developed to the purpose
of verifying that protocols provide the expected level of security [Meadows 2003].
Traditionally, protocols have been veri�ed in a symbolic model, for which e�ective
decision procedures exist under suitable hypotheses [Abadi and Cortier 2006]. Al-
though the symbolic model assumes perfect cryptography, soundness results such
as [Abadi and Rogaway 2002]�see [Cortier et al. 2010] for a recent survey�relate
the symbolic model with the computational model, provided the cryptographic
primitives satisfy adequate notions of security. It is possible to combine symbolic
methods and soundness proofs to achieve guarantees in the computational model,
as done e.g. in [Backes and Laud 2006; Backes et al. 2010; Sprenger and Basin
2008]. One drawback of this approach is that the security proof relies on intri-
cate soundness proofs and hypotheses that unduly restrict the usage of primitives.
Besides, it is not clear whether computational soundness results will always exist
to allow factoring veri�cation through symbolic methods [B ackes and P�tzmann
2005]. Consequently, some authors attempt to provide guarantees directly at the
computational level [Blanchet 2008; Laud 2001; Roy et al. 2008].

In contrast, the formal veri�cation of cryptographic funct ionalities is an emerg-
ing trend. An early work of Barthe et al. [2004] proves the security of ElGamalin
Coq, but the proof relies on the generic model, a very specialized and idealized
model that elides many of the issues that are relevant to cryptography. Den Har-
tog 2008 also provesElGamalsemantic security using a probabilistic (non-relational)
Hoare logic. However, their formalism is not su�ciently pow erful to express pre-
cisely security goals: notions such as well-formed and e�ective adversary are not
modeled.

Blanchet and Pointcheval [2006] were among the �rst to use veri�cation tools
to carry out game-based proofs of cryptographic schemes. They usedCryptoVerif to

133
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prove the existential unforgeability of the FDH signature scheme, with the original
security bound given in Section 5.1, which is much looser than the one given in
Section 5.2.CryptoVerif has also been used to verify the security of many protocols,
including Kerberos [Blanchet et al. 2008]. It is di�cult to a ssessCryptoVerif ability
to handle automatically more complex cryptographic proofs (or tighter security
bounds), e.g. for schemes such asOAEP; on the other hand, compiling CryptoVerif
sequences of games inCertiCrypt is an interesting research direction that would
increase automation in CertiCrypt and con�dence in CryptoVerif�by generating
independently veri�able proofs.

Impagliazzo and Kapron [2006] were the �rst to develop a logic to reason about
indistinguishability. Their logic is built upon a more general logic whose soundness
relies on non-standard arithmetic; they show the correctness of a pseudo-random
generator and that next-bit unpredictability implies pseu do-randomness. Recently,
Zhang [2009] developed a similar logic on top of Hofmann's SLR system [Hofmann
1998] and reconstructed the examples of Impagliazzo and Kapron [2006]. These
logics have limited applicability because they lack support for oracles or adaptive
adversaries and so cannot capture many of the the standard patterns for reason-
ing about cryptographic schemes. More recently Barthe et al. [2010a] developed a
general logic, called Computational Indistinguishability Logic (CIL), that captures
reasoning patterns that are common in provable security, such as simulation and
reduction, and deals with oracles and adaptive adversaries. They use CIL to prove
the security of the Probabilistic Signature Scheme, a widely used signature scheme
that forms part of the PKCS standard [Bellare and Rogaway 1996]. CIL subsumes
an earlier logic by Courant et al. [2008], who developed a form of strongest post-
condition calculus that can establish automatically asymptotic security ( IND-CPA
and IND-CCA2) of encryption schemes that use one-way functions and hash func-
tions modeled as random oracles. They show soundness and provide a prototype
implementation that covers many examples in the literature.

In parallel, several authors have initiated formalizations of game-based proofs
in proof assistants and shown the security of basic examples. Nowak [2007] gives
a game-based proof ofElGamalsemantic security in Coq. Nowak uses a shallow
embedding to model games; his framework ignores complexityissues and has limited
support for proof automation: because there is no special syntax for writing games,
mechanizing syntactic transformations becomes very di�cult. A�eldt et al. [2007]
formalize a game-based proof of the PRP/PRF switching lemmain Coq. However,
their formalization is tailored towards the particular exa mple they consider, which
substantially simpli�es their task and hinders generality. They deal with a weak
(non-adaptive) adversary model and ignore complexity. In another attempt to build
a system supporting provable security, Backes et al. [2008a] formalize a language for
games in theIsabelleproof assistant and prove the Fundamental Lemma; however,
no examples are reported. All in all, these works appear likepreliminary experiments
that are not likely to scale.

Leaving the realm of cryptography, CertiCrypt relies on diverse mathematical
concepts and theories that have been modeled for their own sake. We limit ourselves
to singling out Audebaud and Paulin-Mohring [2009] formalization of the measure
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monad, which we use extensively, and the work of Hurd et al. [2005], who devel-
oped a mechanized theory in the HOL theorem prover for reasoning about pGCL
programs, a probabilistic extension of Dijkstra's guardedcommand language.

8.2 Conclusion

CertiCrypt is a fully formalized framework that supports machine-checked game-
based proofs; we have validated its design through formalizing standard cryp-
tographic proofs. Our work shows that machine-checked proofs of cryptographic
schemes are not only plausible but indeed feasible. However, constructing machine-
checked proofs requires a high-level of expertise in formalproofs and remains time
consuming despite the high level of automation achieved. Thus, CertiCryptonly pro-
vides a �rst step towards the completion of Halevi's program, in spite of the amount
of work invested so far (the project was initiated in June 2006). A medium-term
objective would be to develop a minimalist interface that eases the writing of games
and provides a �xed set of mechanisms (tactics, proof-by-pointing) to prove some
basic transitions, leaving the side conditions as hypotheses. We believe that such
an interface would help cryptographers ensure that there are no obvious �aws in
their de�nitions and proofs, and to build sketches of security proofs. In fact, it is
our experience that the type system and the automated tactics provide valuable
information in debugging proofs.

Numerous research directions remain to be explored. Our main priority is to
improve proof automation. In particular, we expect that one can automate many
proofs in pRHL, by relying on a combination of standard veri� cation tools: weakest
pre-condition generators, invariant inference tools, SMTsolvers.

In addition, it would be useful to formalize cryptographic meta-results such as
the equivalence betweenIND-CPA and IND-CCA2under plaintext awareness, or the
transformation of an IND-CPA-secure scheme into anIND-CCA2-secure scheme [Fu-
jisaki and Okamoto 1999]. Another direction would be to formalize proofs of com-
putational soundness of the symbolic model, see e.g. [Abadiand Rogaway 2002]
and proofs of automated methods for proving security of primitives and protocols,
see e.g. [Courant et al. 2008; Laud 2001]. Finally, it would also be worthwhile to
explore applications of CertiCrypt outside the realm cryptography, in particular to
randomized algorithms and complexity.

Complexity and termination analysis of probabilistic programs

CertiCryptprovides the necessary ingredients to reason about termination and com-
plexity of programs. Yet cryptographic applications only make a limited use of them;
e.g. we only use simple closure properties of PPT programs. It would be instructive
to extend our formalization to de�ne standard complexity cl asses and to prove the
complexity of well-known probabilistic algorithms. More generally, we are interested
in developing automated methods to carry such analyses for programs with loops
and recursive calls.
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Reasoning about probabilistic programs

The pWhile language is su�ciently powerful to program widely used randomized
algorithms, and it would be attractive to endow the formal semantics in Coq with
a mechanized program logic that allows proving formally properties of these algo-
rithms, in the spirit of the work of Hurd et al. [2005].
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