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Résumé

Les séquences de jeux sont une méthodologie établie pour stturer les preuves
cryptographiques. De telles preuves peuvent étre formalé&es rigoureusement en re-
gardant les jeux comme des programmes probabilistes et enilisant des méthodes
de véri cation de programmes. Cette thése décrit CertiCrypt, un outil permettant
la construction et véri cation automatique de preuves basés sur les jeux. Certi-
Crypt est implementé dans l'assistant a la preuve Coq, et repse sur de nombreux
domaines, en particulier les probabilités, la complexitél'algébre, et la sémantique
des langages de programmation. CertiCrypt fournit des outis certi és pour rai-
sonner sur I'équivalence de programmes probabilistes, erapticulier une logique de
Hoare relationnelle, une théorie équationnelle pour I'égivalence observationnelle,
une bibliotheque de transformations de programme, et des hniques propres aux
preuves cryptographiques, permettant de raisonner sur legvénements. Nous va-
lidons I'outil en formalisant les preuves de sécurité de plsieurs exemples emblé-
matiques, notamment le schéma de chirement OAEP et le schéra de signature
FDH.






Abstract

The game-based approach is a popular methodology for struating crypto-
graphic proofs as sequences of games. Game-based proofs loamigorously formal-
ized by taking a code-centric view of games as probabilistiprograms and relying
on programming language techniques to justify proof stepsin this dissertation
we present CertiCrypt, a framework that enables the machinechecked construc-
tion and veri cation of game-based cryptographic proofs. GertiCrypt is built upon
the general-purpose proof assistant Coq, from which it inhgts the ability to pro-
vide independently veri able evidence that proofs are corect, and draws on many
areas, including probability and complexity theory, algebra, and semantics of pro-
gramming languages. The framework provides certi ed toolsto reason about the
equivalence of probabilistic programs, including a relatonal Hoare logic, a theory of
observational equivalence, veri ed program transformations, and ad-hoc program-
ming language techniques of particular interest in cryptogaphic proofs, such as rea-
soning about failure events. We validate our framework thraigh the formalization
of several signi cant case studies, including proofs of secity of the Optimal Asym-
metric Encryption Padding scheme against adaptive chosermiphertext attacks, and
of existential unforgeability of Full-Domain Hash signatures.
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Introduction

esigning secure cryptographic systems is a notoriously di cult task. Indeed,
the history of modern cryptography is fraught with examples of cryptographic
systems that had been thought secure for a long time before lieg broken and with
awed security proofs that stood unchallenged for years. Povable security [Gold-
wasser and Micali| 1984; Stern 2003] is an approach that aimsot establish the
security of cryptographic systems through a rigorous analgis in the form of a
mathematical proof, borrowing techniques from complexity theory. In a typical
provable security argument, security is proved by reduction, showing that any at-
tack against the security of the system would lead to an e cient way to solve some
computationally hard problem.

Provable security holds the promise of delivering strong garantees that cryp-
tographic schemes meet their goals and is becoming unavoitke in the design and
evaluation of new schemes. Yet provable securityper se does not provide specic
tools for managing the complexity of proofs and as a result seeral purported se-
curity arguments that followed the approach have been showrto be awed. Con-
sequently, the cryptography community is increasingly awae of the necessity of
developing methodologies that systematize the type of reaming that pervade cryp-
tographic proofs, and that guarantee that such reasoning isapplied correctly.

One prominent method for achieving a high degree of con dene in crypto-
graphic proofs is to cast security as a program veri cation goblem: this is achieved
by formulating goals and hypotheses in terms of probabilisic programs, and de ning
the adversarial model in terms of complexity classes, e.g.rpbabilistic polynomial-
time programs. This code-centric view leads to statements lat are unambiguous
and amenable to formalization. However, standard methodsa verify programs (e.g.
in terms of program logics) are ine ective to directly address the kind of veri cation
goals that arise from cryptographic statements. The game-bsed approach [Bellare
and Rogaway| 2006 Halevi 2005; Shoup 2004] is an alternatii® standard pro-
gram veri cation methods that establishes the veri cation goal through successive
program transformations. In a nutshell, a game-based proofs structured as a se-
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quence of transformations of the formG; A ! " G%A° where G and G° are prob-
abilistic programs, A and A° are events, andh is a monotonic function such that
Pr[G:A] h(Pr[G%: A9). When the security of a scheme is expressed as an in-
equality of the form Pr[Gp : Ag] p, it can be proved by exhibiting a sequence of
transformations

Go;Ag! " Gp;ALl 1 M GyiA,

and proving that h; hn(Pr{Gn : An])  p. Reductionist arguments can be
naturally formulated in this manner by exhibiting a sequence of games where
Pr[G, : An] encodes the probability of success of some e cient algoritm in solv-
ing a problem assumed to be hard. Under this code-centric vig of games, game
transformations become program transformations and can bgusti ed rigorously
by semantic means; in particular, many transformations canbe viewed as common
program optimizations.

1.1 The CertiCrypt Framework

Whereas Bellare and Rogawey [2006] already observed that de-based proofs could
be more easily amenable to machine-checking, Halevi [200&igued that formal ver-

i cation techniques should be used to improve trust in cryptographic proofs, and set
up a program for building a tool that could be used by the cryptography community
to mechanize their proofs. We take a rst step towards Halevls ambitious program
by presenting CertiCrypt [Barthe et al.2009¢], a fully machine-checked framework
for constructing and verifying game-based cryptographic poofs. CertiCrypt builds
on top of the Coqproof assistant [The Cog development team 2009] a broad seff o
reasoning principles used by cryptographers, drawing on gygram veri cation, alge-
braic reasoning, and probability and complexity theory. The most notable features
of the framework are:

Faithful and rigorous encoding of gamesin order to be readily accessible to cryp-
tographers, we adopt a formalism that is commonly used to dexibe games.
Concretely, the lowest layer of CertiCrypt is an imperative programming lan-
guage with probabilistic assignments, structured datatypes, and procedure calls.
We formalize the syntax and semantics of programs; the latte uses the mea-
sure monad of Audebaud and Paulin-Mohring [2009]. (For the onnoisseur, we
provide a deep and dependently-typed embedding of the syntg thanks to de-
pendent types, the typeability of programs is obtained for fee.) The semantics
is instrumented to calculate the cost of running programs; his o ers the means
to de ne complexity classes, and in particular to de ne formally the notion
of e cient (probabilistic polynomial-time) adversary. We provide in addition a
precise formalization of the adversarial model that captues many assumptions
left informal in proofs, notably including policies on memary access.

Exact security. Many security proofs only show that the advantage of any e cient
adversary against the security of a cryptographic system iasymptotically neg-
ligible with respect to a security parameter (which typically determines the
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length of keys or messages). However, the cryptography comumity is increas-
ingly focusing on exact security, a more useful goal since gives hints as to how
to choose system parameters in practice to satisfy a secuyitrequirement. The
goal of exact security is to provide a concrete upper bound fothe advantage
of an adversary executing in a given amount of time. This is ingeneral done by
reduction, constructing an algorithm that solves a problembelieved to be hard
and giving a lower bound for its success probability and an uper bound for
its execution time in terms of the advantage and execution time of the origi-
nal adversary. We focus on bounding the success probabilitfand only provide
automation to bound the execution time asymptotically) since it is arguably
where lies most of the di culty of a cryptographic proof.

Full and independently veri able proofs We adopt a formal semanticist perspec-
tive and go beyond Halevi's vision in two respects. First, weprovide a uni ed
framework to carry out full proofs; all intermediate steps of reasoning can be
justi ed formally, including complex side conditions that justify the correctness
of transformations (about probabilities, algebra, compleity, etc.). Second, one
notable feature of Cog and thus CertiCrypt is to deliver independently veri -
able proofs, an important motivation behind the game-basedapproach. More
concretely, every proof yields a proof object that can be cheked automati-
cally by a (small and trustworthy) proof checking engine. In order to trust a
cryptographic proof, one only needs to check its statement ad not its details.

Powerful and automated reasoning methodd/\e formalize a relational Hoare logic
and a theory of observational equivalence, and use them as egpping stones
to support the main tools of code-based reasoning. In partiglar, we prove
that many transformations used in code-based proofs, inclding common opti-
mizations, are semantics-preserving. In addition, we mecdhnize reasoning pat-
terns used ubiquitously in cryptographic proofs, such as rasoning about fail-
ure events (the so-called fundamental lemma of game-playg), and a logic for
inter-procedural code-motion (used to justify the eager/lazy sampling of ran-
dom values).

1.2 Organization of the Dissertation

The purpose of this dissertation is to provide a high-level @scription of the Cer-
tiCrypt framework, overview the case studies that have been formaed, and stir
further interest in machine-checked cryptographic proofs The rest of the disserta-
tion is organized as follows:

In the rest of this chapter we brie y discuss the motivation b ehind formal proofs
and the features of modern proof assistants. We then presertvo introductory

examples of game-based proofs, namely the semantic secyrivf the EIGamal
and Hashed ElGamal encryption schemes. These examples, lattugh simple,
nicely illustrate the kind of veri cation problem that we st udy and the tech-
nigues that we use to mechanize the construction of proofs.
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In Chapter ] we overview the mathematical background behindour formal-
ization and present the probabilistic language that we use ¢ describe games
and its semantics. We also discuss our model of adversariesd the notions of
complexity and termination of programs in a probabilistic setting;

In Chapter Blwe present the probabilistic relational Hoare bgic that constitutes
the core of the framework, and describe the formulation and machanization of
game transformations. We describe as well two ubiquitous r@soning patterns of
cryptographic proofs and specializations of the relationdHoare logic that can
be used to automate them;

In Chapter Blwe give a detailed description of two di erent formalizations of the
PRP/PRF switching lemma, an important result in cryptograp hy that admits
an elegant proof using games;

In Chapter Blwe describe two di erent machine-checked prodd of the existential
unforgeability against chosen-message attacks of the FulDomain Hash digital
signature scheme. We compare the resulting security boundand discuss the
practical importance of tight reductions and the role that exact security plays
in choosing adequate parameters when instantiating schense

In Chapter BElwe describe in some detail a machine-checked podof the semantic
security of the Optimal Asymmetric Encryption Padding scheme against chosen-
plaintext attacks, and we report on a signi cantly more challenging proof of the
security of the same scheme under adaptive chosen-cipherteattacks;

In Chapter [7/] we overview a machine-checked theory of a largelass of zero-
knowledge protocols. We illustrate how to use this theory toobtain short proofs
of several well-known zero-knowledge protocols from thetkrature;

We conclude in Chapter 8 with a survey of related work in the aea, a discussion
of the lessons we learned while buildingCertiCrypt and perspectives to improve
automation and further this line of research.

1.3 A Primer on Formal Proofs

Proof assistants are programs designed to support interagte construction and

automatic veri cation of mathematical statements (understood in a broad sense).
Initially developed by logicians to experiment with the expressive power of their
foundational formalisms, proof assistants are now emergimas a mature technology
that can be used e ectively for verifying intricate mathematical proofs, such as the
Four Color theorem [Gonthier |2008] or the Kepler conjecture[Hales| 2008; Hales
et al. [2010], or complex software systems, such as operatirgystems |[Klein et al.

2009, virtual machines [Klein_and Nipkow|2006] and optimizng compilers [Leroy

2006]. In the realm of cryptography, proof assistants have ben used to formally
verify secrecy and authenticity properties of protocols |[Raulson|1993].

Proof assistants rely on expressive speci cation languagethat allow formalizing
arbitrary mathematical notions, and that provide a formal r epresentation of proofs
as proof objects. Their architecture is organized into two ayers: a kernel, and a
proof engine.
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The kernel is the cornerstone for correctness. Its central@mponent is a checker
for verifying the consistency of formal theories, includirg de nitions and proofs.

In particular, the checker guarantees that de nitions and proofs are well-typed,
that there are no missing cases or unde ned notions in de nifons, and that all

proofs are built from valid elementary logical steps and malk a correct use of
assumptions.

In contrast, the proof engine assists proof construction. he proof engine em-
braces a variety of tools. The primary tools are a set of pre-d ned tactics; a

language for writing user-de ned tactics is usually provided. Tactics allow to

reduce a proof goal to simpler ones. When invoked on a proof gbQ, a tactic

will compute a new set of goals?; : :: P, and a proof that P1* ::: 2 P, =) Q.

At the end of each demonstration, the proof engine outputs a poof object.

Proof objects are independently checked by the kernel. Thexfore, the proof engine
needs not be trusted, and the validity of a formal proof beyon d the accuracy
of the statement itself only depends on the correctness of the kernel. Pleasingly,
kernels are extremely reliable programs with restricted functionalities and solid
logical foundations.

As with any other mathematical activity, formal proofs stri ve for elegance and
conciseness. In our experience, they also provide a naturaketting for improving
proofs in the case of cryptography, improvement can be measued by comparing
exact security bounds. Yet, what matters most about a formal proof is that it
provides a nearly absolute degree of guarantee, without ragring expensive human
veri cation.

1.4 Introductory Examples

This section illustrates the principles of the CertiCrypt framework on two elemen-
tary examples of game-based proofs: the semantic securityf &lGamal encryption
under the Decision Di e-Hellman assumption, and the semantic security of Hashed
ElGamal encryption in the Random Oracle Model under the Computational Di e-
Hellman assumption. The language used to represent games Wwbe formally in-
troduced in the next chapter; an intuitive understanding should su ce to grasp
the meaning of the games appearing here. We begin with some teground on
encryption schemes and their security.

De nition 1.1 (Asymmetric encryption scheme). An asymmetric encryption
scheme is composed of a triple of algorithms:

Key generatiornt Given a security parameter , the key generation algorithmKG( )
returns a public/secret key pair (pk; sk);

Encryption: Given a public keypk and a plaintext m, the encryption algorithm
E(pk; m) computes a ciphertext corresponding to the encryption of
m under pk;
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Decryption: Given a secret keysk and a ciphertextc, the decryption algorithm
D(sk; c) returns either the plaintext corresponding to the decryption
of ¢, if it is a valid ciphertext, or a distinguished value? otherwise.

Key generation and encryption may be probabilistic, while d=yption is determin-
istic. We require that decryption undo encryption: for every par of keys (pk; sk)
that can be output by the key generation algorithm, and every agghtext m, it must
be the case thatD(sk; E(pk;m)) = m.

An asymmetric encryption scheme is said to be semanticallyecure if it is un-
feasible to gain signi cant information about a plaintext g iven only a corresponding
ciphertext and the public key. Goldwasser and Micali [1984]showed that seman-
tic security is equivalent to the property of ciphertext ind istinguishability under
chosen-plaintext attacks (IND-CPA, for short). This property can be formally de-
ned in terms of a game played between a challenger and an advsary A, repre-
sented as a pair of procedure$¢A1;A») that may share state:

Game IND-CPA:
(pk;sk) KG ();
(mo;m1) A 1(pk);
b s f0;1g;

c E (pk;my);

b A 2(0)

In this game, the challenger rst generates a new key pair andyives the public key
pk to the adversary, who returns two plaintexts mg; m; of its choice. The challenger
then tosses a fair coinb and gives the encryption ofmy, back to the adversary, whose
goal is to guess which message has been encrypted.

De nition 1.2 (IND-CPA security). The advantage of an adversanA in the
above experiment is de ned as
h i
Adv NPCPA = pr IND-CPA:b=b =

An encryption scheme is said to bdND-CPA secure if the advantage of any e cient
adversary is a negligible function of the security parameter , i.e., the adversary
cannot do much better than a blind guess.

De nition 1.3 (Negligible function). A function :N! R is said to be negli-
gible if it decreases asymptotically faster than the inversef any polynomial:

8C2N:9nNc2N:8n2N:n n.=)j (n)j n¢

Note that in order to satisfy the above de nition, an encrypt ion scheme must
necessarily be probabilistic, otherwise an adversary codltrivially detect to which
message corresponds the challenge ciphertext by simply eypting one of the mes-
sages it has chosen and comparing the resulting ciphertext ith the challenge ci-
phertext.
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1.4.1 The ElGamal Encryption Scheme

Let fG g be a family of cyclic prime-order groups indexed by a secunt parameter

2 N. For a speci c value of the security parameter, which we leae implicit, let q
denote the order of the corresponding group in the family andet g be a generator.
ElGamal encryption is de ned by the following triple of algo rithms:

KG( ) £ x s Zg; return (g*;x)
E(;m) €y s Zg return(gY; Y m)
D(x;(; ) ¥ return( X)

We prove the IND-CPA security of EIGamal encryption under the assumption that
the Decision Die-Hellman ( DDH) problem is hard. Intuitively, for a family of
nite cyclic groups, the DDH problem consists in distinguishing between triples
of the form (g*;@¥; @) and triples of the form (g*;g”;g*) , where the exponents
X;y;z are uniformly sampled fromZ,. One characteristic of game-based proofs is to
formulate computational assumptions using games; the assaption that the DDH
problem is hard is no exception and can be formulated as follus:

De nition 1.4 (Decision Di e-Hellman assumption). Consider the follow-
ing games
Game DDHp : x;y ® Zq; d B (g%;¢";0Y)
Game DDH; : x;y;z ¢ Zq;d B (0%, ¢;9%)
and de ne the DDH-advantage of an adversaryB as follows
Adv BP" ¥ iPr[DDHp:d=1] Pr[DDH; :d= 1]

We say that theDDH assumption holds for the family of groupd G g when the ad-
vantage of any e cient adversary B in the above experiment is a negligible function
of the security parameter. Note that the semantics of the game@nd in particular
the order q of the group) depends on the security parameter.

ElGamal is an emblematic example of game-based proofs. Thergof of its se-
curity, which follows the proof by Shoup [2004], embodies miay of the techniques
described in the next chapters. The proof is done by reductio and shows that every
adversary A against the chosen-plaintext security of EIGamal that acheves a given
advantage can be used to construct a distinguisheB that solves DDH with the
same advantage and in roughly the same amount of time. We exhit a concrete
construction of this distinguisher:

Adversary B(;; ):
(mo;m1) A 1( )

b s f0;1g;

b A o; Mp);
returnb= Db

We prove that Adv 2°" = Adv PP for any given adversaryA. To conclude the

proof (i.e. to show that the advantage of any e cient adversary A is negligible),
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we show that the reduction is e cient: the adversary B executes in probabilistic
polynomial-time provided the IND-CPA adversary A does we do not show a con-
crete bound for the execution time ofB, although it is evident that it incurs only
a constant overhead.

Figure [L1 gives a high-level view of the reduction: games ggear inside white
background boxes, whereas gray background boxes contain ¢hactual proof scripts
used to prove observational equivalence between consecuti games. A proof script
is simply a sequence of tactics, each intermediate tactic insforms the current goal
into a simpler one, whereas the last tactic in the script ultimately solves the goal.
The tactics that appear in the gure hopefully have self-explanatory names, but
are explained cursorily below and in more detail in Chaptei™8

The proof proceeds by constructing an adversarB against DDH such that the
distribution of b= B (equivalently, d) after running the IND-CPA game for EIGamal
is exactly the same as the distribution obtained by running gameDDHy. In addition,
we show that the probability of d being true in DDH; is exactly 1=2 for the same
adversary B. The remaining gap betweenDDH, and DDH; is the DDH-advantage
of B. The reduction is summarized by the following equations:

h [
Pr IND-CPA:b=Db 1=2 = jPr[Gy:d] 1=2 1.1)
= jPr[DDHp : d] 1=2j 1.2)
= jPr[DDHp : d] Pr[Gs: d]j 1.3)
= jPr[DDHp : d] Pr[G;: d]j 1.4)

= jPr[DDHp : d] Pr[DDH; : djj (1.5)

Equation (L.I) holds because gamelND-CPA and G; induce the same distribution
on d. We specify this as an observational equivalence judgmentsiND-CPA" {44 G,
and prove it using certi ed program transformations and dedsion procedures. A
graphical representation of the sequence of tactics used tprove this judgment is
shown in Figure[I.2. We rst inline the procedure calls to KG and E in the IND-CPA
game and simplify the resulting games by propagating assignents and eliminating
dead code (tacticsep, deadcode). At this point we are left with two games almost
identical, except that y is sampled later in one game than in the other. The tactic
swap hoists instructions in one game whenever is possible in ordeo obtain a
maximal common pre x with another game, and allows us to hoig the sampling
of y in the program on the left hand side. We conclude the proof by aplying the
tactic eqobs_in that decides observational equivalence of a program with gelf.
Equations (T.2) and (I.8) are obtained similarly, while (13) is established by
simple probabilistic reasoning: because in game&; the bit bis independent fromb,
the probability of both bits being equal is exactly 1=2. Finally, to prove (L.4) we
begin by removing the part the two games have in common with tle exception of
the instruction z s Z4 (swap eqobs_hd eqobs_tl ) and then apply an algebraic
property of cyclic groups that we have proved as a lemmadtp ): if one applies the
group operation to a uniformly distributed element of the group and some other
constant element, the result is uniformly distributed a ran dom element acts as a
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(Game IND-CPA: ) (Game Gs: )
(;x) KG (); Xy ¢ Za;
(mo;m1) A 1( ) (mo;m1) A 1@);
b s f0;1g; z s Zg; g
@ () E Gmoy) 5 A g );
inine k& | B A 2(; ) b s f0; 1g; (et
inine E | d b=10 ) Ld b= b | swap
ep \ , eqobs_hd 4
deadcode —— ' g fdg<—eqobs_tl 2
swap |
eqobs_in  (Game G; : N Game G, ~ apply otp
Xy ¢ Zg; Xy $ Zg;
(mo;mi1) A 1(g"); (mo;mi1) A 1(g");
b s f0; 1g; bs f0;1g;z ¢ Zg;
g¥  myp; o My
@2 (b A g ) B A 2 ) )
inine B (d Db=0D ) ld b=b ) g}l)lne B
ep SERTT TR e o SR .
g:ﬁggoﬁf e |Adversary B(;; )| fdg Eswat[’) _
~:|Game DDHo : 1 (mo;m1) A 1( ); [|Game DDHj : | €q0bs_in
1%y ® Zg; 1b s f0;1g; | Xyiz 8 Zg; ;
1d B (g50:9Y) [{® A 2(; my); [[d B (g;¢";9%)
: | retun b= 1° :
Fig. 1.1. Code-based proof of EIGamal semantic security.
one-time pad. This allows to prove thatz s Zg; g° mpandz s Zg; o

induce the same distribution on , and thus remove the dependence df on b.

The proof concludes by applying theDDH assumption to show that the IND-CPA
advantage ofA is negligible. For this, and in view that Adv A" = Adv 5°" | it
su ces to prove that the adversary B is probabilistic polynomial-time (under the
assumption that the proceduresA; and A, are so); the proof of this latter fact is
entirely automated in CertiCrypt

1.4.2 The Hashed ElGamal Encryption Scheme

Hashed ElGamal is a variant of the EIGamal public-key encrygion scheme that does
not require plaintexts to be members of the underlying groupG. Instead, plaintexts

in Hashed ElGamal are just bitstrings of a certain length™ and group elements are
mapped into bitstrings using a hash functionH : G ! f 0;1g . Formally, the scheme
is de ned by the following triple of algorithms:

KG( ) € x s Zg; return (g*;x)
E(;m) € ys Zgyh H(VY) return(g’;h  m)
DO (; ) € h  H(X); retun( h)

Hashed ElGamal encryption is semantically secure in the radom oracle model un-
der the Computational Di e-Hellman ( CDH) assumption on the underlying group
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((ix) KG () | (xy s Zg; )
(mo;mi1) A 1( ); (mo;m1) A 1(g°);
b s f0; 1g; b s f0; 1g;
(; ) E (Gmoy); ' tdg gv  my;
B A 205 ) b A ¢ )
ld b=1b ] ld b=1b J
inline KG; inline E

(X s Zgi o ) (%y s Za; )
(mo;mi1) A 1( ); (mo;ma) A 1(g);
b s f0; 1g; b s f0; 1g;
y ¢ Zg; 9’ . g¥y  my;

Y mp; fdg B A 29 )
b A 205 ) d b=b
\d b: b J |\ J

ep; deadcode
(x s Zg; ) (x;y & Zg; A
(mo;m1) A 1(g°); (mo;m1) A 1(g");
b s f0; 1g; b s f0; 1g;
y s Zg; ' 1 dg B A 2(9:9Y mo);
B A 2¢,0Y my), d b=b
\d b= b J | J
swap

(xy s Zg; ) (xy s Zg; )
(mo;m1) A 1(g"); (mo;m1) A 1(g*);
b s f0; 1g; , b s f0; 1g;
b A 2(g;gY mp); fdg b A 2(g;9Y mp);
d b="0 l d b="0
- eqgobs_in - /

Fig. 1.2. Sequence of transformations in the proof of IND-CPA " ;44 G1.

family fG g. This is the assumption that it is hard to compute g*¥ given only g*
and g¥ wherex andy are uniformly sampled fromZ,. Clearly, the DDH assumption
implies the CDH assumption, but the converse need not necessarily hof.

De nition 1.5 (Computational Di e-Hellman assumption). Consider the
following game
Game CDH: x;y s Zg; B (g5;¢)

and de ne the success probability oB against CDH as follows
Adv g°" £ Pr[CDH: = g¥]

We say that the CDH assumption holds for the family of groupsf G g when the
success probability of any probabilistic polynomial-timeadversary B is a negligible
function of the security parameter.

! Groups where DDH is easy andCDH is believed to be hard are of practical importance
in cryptography and are called Die-Hellman gap groups [Okamoto and Pointcheval
2001a].
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We show that any adversary A against the IND-CPA security of Hashed ElGamal
that makes at most gqq queries to the hash oracleH can be used to construct
an adversary B that achieves a success probability ofy,* Adv A'°“™ in solving

the CDH problem. The reduction is done in the random oracle model, whre hash
functions are modeled as truly random functions. We represat random oracles using
stateful procedures; queries are answered consistenthf:3ome value is queried twice,

the same response is given. For instance, we code the hash ftion H as follows:

Oracle H( ):
if 2 dom(L) then
h s f0;1g ;
L (;h):L
elseh L[]
return h

The proof is sketched in Figure[ZI.B. We follow the conventiorof typesetting global
variables in boldface. The gure shows the sequence of gamessed to relate the
success of thdND-CPA adversary in the original attack game to the success of the
CDH adversary B; the de nition of the hash oracle is shown alongside each gam
As in the proof of the semantic security of EIGamal, we begin § inlining the calls
to KG and E in the IND-CPA game to obtain an observationally equivalent game
G such that h i h i

Pr IND-CPA:b=D =Pr G;:b="0 (1.6)

We then x the value fi that the hash oracle gives in response t@® . This is an
instance of the lazy sampling transformation: any value that is randomly sampled
at some point in a program can be sampled in advance, somewteearlier in the
program. This transformation is automated in CertiCryptand is described in greater
detail in Section[32Z.3. We get
h [ h [
Pr Gi:b=Db =Pr G, :b="0 @.7)

We can then modify the hash oracle so that it does not store inL the response
given to a g query; this will later let us remove fi altogether from the code of
the hash oracle. We prove that gamess, and G are equivalent by considering the
following relational invariant:

22 & ( 2domlL)=) L[ ]=M)hi~8: 6 Hi=) L[]ni=L[ ]

whereehli (resp. eh2i) denotes the value that expressiore takes in the left hand side
(resp. right hand side) program. Intuitively, this invaria nt shows that the association
list L, which represents the memory of the hash oracle, coincides both programs,
except perhaps on the element , which the list in the program on the left hand side
(G,) necessarily maps tofi. It is easy to prove that the implementations of oracleH
in gamesG, and G; are semantically equivalent under this invariant and preseve
it. Since 3 is established just before callingA and is preserved throughout the
games, we can prove by inlining the call toH in game G, that
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(Game IND-CPA :
L nil;

Oracle H( ):

if 62dom(L) then

N

(;x) KG () h s f0;1g ;
(mosme) A 1( )l L (;h):L
b s f0;1g; elseh L[]
(;v) E (smyp); [ returnh
LB A 2(5v) )
' f b;bg
(Game G; : Oracle H( ): )
L nil; if 62dom(L) then
Xy § Zg; h s f0;1g ;
(mo;m1) A 1(g*)|l L (;h):L
b s f0;1g; elseh L[]
h  H(@) return h
Y h mp;
LB A 2(g;v) )
I f b;bg
(Game G;: Oracle H( ): h
s fo 1g'; if 62dom(L) then
L nil; if = then
X,y $ Zg; h A
R elseh s f0;1g
(mo;ma) A 1(@)|l L (;h):L
b s f0;1g; elseh L[]
h  H( ) return h
v h mp;
B A 2(g"v) )
fb;bg" 23
(Game G;: Oracle H( ): h
ﬁ $ fO; ]_g‘; if = then
L il h A
Xy $ Zg; else
o if 62lom(L) then
(mo;m1) A 1(g"); h s f01g
b s 10;1g; L (;h):L
h  f; elsesh L[]
v h my; return h
Y.
\b A 2(9;Vv) )

A

(Game G4 [ Oracle H( ): )
bad false if 62dom(L) then
ﬁ $ fo; ]_g\; if = then
L nil; bad true;
Xy ¢ Zo h___fl
; h s £0;1g |
(mo;m1) A 1(0"))| elseh s f0; 1g
b$fﬁO,1g,. L (;h)=L
v My, elsesh L[]
(B A 2(9V) return h )
fL; ;b;bgr (bad =) 2 dom(L)) hii
(Game Gs : Oracle H( ): )
L nil; if 62dom(L) then
X,y $ Zg; h s {019 ;
v, L (;h):L
(mo;mi1) A 1(g")| elseh L[]
b s f0;1g; return h
v s f0;19 ;
Av my
B A 2(g:v)
. J
' fLxy g
(Game CDH: Oracle H( ): h
X;y $ Zg; if  62dom(L) then
B (g:9") hsf01g;
. L (;h)=L
Al_d"erfﬁ}.ry BG Mleiseh L[ ]
(mo;mz) A 1( ); || MM D
v s f0;1g;
B A 2(;v);
s dom(L);
\_return )

Fig. 1.3. Game-based proof of semantic security of Hashed ElGamal encyption in the
Random Oracle Model.
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h [ h [
Pr G:b=bD =Pr G3:b="0 (1.8)

We then undo the previous modi cation to revert to the previous implementation
of the hash oracle and prove that game$s; and G4 are observationally equivalent,
from which we obtain
h [ h [
Pr G:b=0bD =Pr G;:b="0 1.9

Let us now introduce a Boolean agbad that is set at program points where the
code of G4 and Gs dier. We argue that the dierence in the probability of any
event in those games is bounded by the probability ofbad being set in Gs, and
therefore h i h i

Pr Gg:b=1B Pr G:b=D0 Pr[Gs : bad] (1.10)

This form of reasoning is pervasive in game-based cryptogphic proofs and is an in-
stance of the so-called Fundamental Lemma that we discuss idetail in Section[3.3.
In addition, we establish that bad =) 2 dom(L) is a post-condition of game
Gs and thus

Pr(Gs :bad] Pr[Gs: 2 dom(L)] (1.12)

Since now both branches in the innermost conditional of the hsh oracle are equiv-
alent, we coalesce them to recover the original random oraelimplementation of H
in Gg. We can now use theswaptactic to defer the sampling of fi to the point just
before computingv, and substitute

vsfolg;h v my for s folg;v A mp

The semantic equivalence of these two program fragments calme proved using the
probabilistic relational Hoare logic presented in Section3.D a proof is given in
Section[3.2.2. Hence,

h [ h [
Pr G:b=D =Pr Gs:b="0 (1.12)
and
PriGs: 2domL)]=Pr[Gs: 2 dom(L)] (1.13)
Observe that b does not depend anymore obin Gs (f v my is dead code), so
h i
Pr Go:b=b = = (1.14)

2

We nally construct an adversary B against CDH that interacts with the adversary
A playing the role of an IND-CPA challenger. It returns a random element sampled
from the list of queries that adversary A made to the hash oracle. Observe that
B does not need to knowx or y because it getsg* and g as parameters. If the
correct answer = g¥ to the CDH challenge appears in the list of queriet when
the experiment terminates, adversaryB has probability jLj * of returning it as an
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answer. Since we know thatA does not make more thangy queries to the hash
oracle, we nally have that

PriGe: 2dom(L)]=Pr[Gs:g?¥ 2domL)] oy Pr[CDH: = g¥] (1.15)

To summarize, from (L.8) (1[I5)we obtain

h i h i
Pr IND-CPA:b=Db 1=2 = Pr Gy:b=0b 1=2
h i h i
= Pr G:b=b Pr G:b="0b
h i h i
= Pr G:b=B6 Pr G:b=>0
Pr[Gs : bad]

PriGs: 2 dom(L)]
gu Pr[CDH: = g¥]

For any adversary A that executes in polynomial time, we can assume that the
bound g4 on the number of queries is polynomial on the security parameer. Un-
der the CDH assumption, the IND-CPA advantage of adversaryA must then be
negligible. Otherwise, the adversaryB that we constructed would solve CDH with
non-negligible probability, contradicting our computati onal assumption. To see this,
we need to verify that adversaryB runs in probabilistic polynomial time, but this
is the case because procedures;; A, do, and B does not perform any additional
costly computations. As in the previous example, the proof 6 this latter fact is
completely automated in CertiCrypt

We note that Hashed ElGamal can also be proved semanticallyecure in the
standard model, but under the stronger DDH assumption. A game-based proof
appears in [Barthe et al.|2009a]. The security reduction carbe made under the
hypothesis that the family of hash functionsH is entropy smoothingsuch a family
of hash functions can be built without additional assumptions using the Leftover
Hash Lemma [Hastad et all 1999].



A Language for Describing Games

e have tried so far to be as rigorous as possible in our treatmerof crypto-
W graphic proofs. We argued that a game-based approach can ldao tidier,
more understandable proofs that help eliminate conspicuos errors and make clear
the reasoning behind each step in a proof. We moved one steprfeard, taking a
language-based approach and regarding games as programsautbBstill, our under-
standing of what a game means remains purely intuitive. In this chapter we will
make this intuition precise by de ning formally the probabi listic language we use
to describe games and its semantics. This semanticist perggtive allows a precise
speci cation of the interaction between an adversary and tre challenger in a game,
and to readily answer questions that often arise in proofs, ach as: Which oracles
does the adversary have access to? Can the adversary read/ie this variable? How
many queries the adversary can make to a given oracle? What ithe type/length
of a value returned by the adversary? Can the adversary repdaa query? Fur-
thermore, the framework enables us to give very precise de itions of fundamental
notions such as probabilistic polynomial-time complexity or termination which are
of paramount importance in the speci cation of security de nitions and computa-
tional hardness assumptions.

2.1 Mathematical Preliminaries

2.1.1 The Unit Interval

The starting point of our formalization is the ALEA Coq library, developed by
Paulin-Mohring and described in [Audebaud and Paulin-Mohring2009)]. It provides
an axiomatization of the unit interval [0; 1], with the following operations:

Addition : (x;y) 7! min(x + y;1), where+ denotes addition over reals;
Inversion: x7''1 x,where denotes subtraction over reals;
Multiplication : (x;y) 7! x y, where denotes multiplication over reals;

15



16 Chapter 2. A Language for Describing Games

Division : (x;y 6 0) 7! min(x=y; 1), where=denotes division over reals; more-
over, if y = 0, for convenience division is de ned to be 0.

Other useful operations can be derived from these basic opations; for instance
the absolute value of the dierence of two valuesx;y 2 [0;1] can be obtained by
computing (x y)+(y X) and their maximum by computing (x y)+ .

The unit interval can be given an ! -complete partial order (cpo) structure.
Recall that an ! -cpo consists of a partially ordered set such that any monotaic
sequence has a least upper bound. The unit intervdl0; 1] can be given the structure
of a! -cpo by taking as order the usual relation and by de ning an operator sup
that computes the least upper bound of a monotonic sequencé : N ! [0; 1] as
follows:

sup f = max f(n)

More generally, for any complete partially ordered setD, we usesupf to denote the
least upper bound of a monotonic sequencé : N! D. Note that a cpo structure
on D induces a cpo structure in the function spaceA ! D by taking

f apg € 8:AT(X) pg(x)
Oa1 D def X: Op
def

supay pf = Xt supp (f (X))

2.1.2 The Measure Monad

Programs are interpreted as functions from initial memories to sub-probability dis-
tributions over nal memories. To give semantics to most programs used in crypto-
graphic proofs, it would be su cient to consider sub-distri butions with a countable
support, which admit a very direct formalization as functions of the form
X
AL [0 1] such that x) 1
X2A

However, it is convenient to take a more general approach andepresent instead a
distribution over a set A as a probability measure, by giving a function that maps
a [0; 1]-valued random variable (a function in A ! [0;1]) to its expected value,
i.e. the integral of the random variable with respect to the probability measure.
This view of distributions eliminates the need of cluttered de nitions and proofs
involving summations, and allows us to give a continuationpassing style semantics
to programs by de ning a suitable monadic structure on distributions. Formally,
we represent a distribution on A as a function of type

D(A) &€ (A! [0;1])! [0:1]

satisfying the following properties:

Monotonicity : f g=) f g;
Compatibility with inverse: (1 f) 1 f ;
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Additive linearity : f 1 g»= f+g=f + g;

Multiplicative linearity : k f)y=k f;

Continuity : if f :N! (A! [0;1]) is monotonic, then (sup f)
sup ()

We do not restrict our attention only to distributions with p robability mass of 1,
but we consider as well sub-probability distributions, that may have a total mass
strictly less than 1. As we will see, this is key to give semarits to non-terminating
programs (i.e. programs that do not terminate with probability 1).

Distributions can be interpreted as a monad whoseunit and bind operators are
de ned as follows:

unit :A!'D (A) X fifx
bind: D(A)! (A!'D (B)!D (B) ¥ : F: f (x: (Fx)f)

D,

These operators satisfy the usual monadic laws

bind (unit x) F
bind unit
bind (bind F ) G

F x

bind (x: bind (F x) G)

The monad D was proposed by Audebaud and Paulin-Mohring[2009] as a vaaint
of the expectation monad used by Ramsey and Pfe erl[2002], ashbuilds on earlier
work by Kozen [1981]. It is, in turn, a specialization of the @ntinuation monad
(A! B)! B, withresulttype B =[0;1].

2.1.3 Lifting Predicates and Relations to Distributions

For a distribution  : D(A) over a countable setA, we let suppor{ ) denote the set
of values in A with positive probability, i.e. its support:

suppor( ) € X2 A j 0< iy
where lx denotes the indicator function of setX,

| def 1 ifx2X
X = 0 otherwise

To lift relations to probability distributions we follow th e early work of Jonsson
et al. [2001] on probabilistic bisimulations.

De nition 2.1 (Lifting predicates to distributions). Let be a distribution
on a setA, and P be a predicate onA. We de ne the lifting of P to as follows:

rangeP £ 8. Bx:Px =) fx=0=) f =0
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This rather contrived de nition is necessary because we cosider sub-probability
distributions whose total measure may be less than 1; equivantly we could have
stated it as:

rangeP € g 8BxxPx =) fx=1)=) = 1

Note also that due to the way distributions are formalized, the above de nition is
strictly stronger than the following, more intuitive de ni tion:

rangeP £ 8x 2 suppor( ):0< (ltxg) =) P X
This latter de nition makes sense only for distributions wi th countable support, for
which it can be proved equivalent to the above de nitions.

De nition 2.2 (Lifting relations to distributions). Let ; be a probability dis-
tribution on a set A and , a probability distribution on a setB. We de ne the lifting
ofarelationR A B to ; and , as follows:

1R* 5, ¥ 9 DA B): ()= 1~ 2()= 2 " rangeR (2.1)

whererangeR  stands for the lifting of R, seen as a predicate on pairs inA B,
to distribution , and the projections 1( ), 2( ) of are given by

1() % bind (unit fst) 2() % bind (unit snd

In contrast to the de nition given by Jonsson et al.|[2001], the de nition above
makes sense even when the distributions do not have a countébsupport. When
they do, both de nitions coincide; in this case, 1 R , amounts to saying that
the probability of each elementa in the support of 3 can be divided among the
elements related to it in such a way that when summing up over hese probabilities
for an elementb 2 B, one obtains » lpg.

Let us give an example that conveys a better intuition; suppse one wants to
prove Uy R* Ug, where Uy stands for the uniform probability distribution on a
nite set X. When A and B have the same size, proving this is equivalent to
exhibiting a bijection f : A ! B such that for every a 2 A, R(a;f(a)) holds.
Indeed, using suchf it is easy to build a distribution on A B that satis es the
condition in (E.I):

£ bind Ux (a: unit (a;f (a)))

This example, as trivial as it may seem, shows that probabilstic reasoning can some-
times be replaced by simpler forms of reasoning. In typical iyptographic proofs,
purely probabilistic reasoning is seldom necessary and mbshundane steps in proofs
can be either entirely automated or reduced to verifying sinpler conditions, much
like in the above example, e.g. showing the existence of a kigtion with particular
properties.

The way we chose to lift relations over memories to relation®ver distributions is
a generalization to arbitrary relations of the de nition of |Sabelfeld and Sands [2001]
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that applies only to equivalence relations. Indeed, theres a simpler but equivalent
(see [[Jonsson et &l. 2001]) way of lifting an equivalence raion to distributions:
if R is an equivalence relation onA, then 1 R* 5 holds if and only if for all
equivalence classefa] A, 1ljg = 2l

De ne two functions f and g to be equal modulo a relation i

def

f=19 = &yxy =) f(x)=9)
It can be easily shown that the above general de nition of liting satis es
1 Fanf= g 9) 1f= 29

and analogously.
1 P f g =) 1 f 29

We use these properties to prove rules relating observatical equivalence to proba-
bility in Section 8.11

It can be shown that lifting preserves the re exivity and symmetry of the lifted
relation, but proving that it preserves transitivity is not as straightforward. Ideally,
one would like to have for probability measures ; : D(A), 2 :D(B), 3:D(C)
and relations A B, B C

#
1 Foan o P g 9) 1) s

Proving this for arbitrary distributions requires proving Fubini's theorem for prob-
ability measures, which allows to compute integrals with respect to a product mea-
sure in terms of iterated integrals with respect to the original measures. Since in
practice we consider distributions with a countable suppot, we do not need the full
generality of this result, and we prove it under the assumpton that the distribution

2 has a countable support, i.e. there exist coe cients¢ : [0;1] and points b : B
such that, for any f,

b3
2 f = cf (b)
i=0

Lemma 2.3. Considerd; : D(A), d2 : D(B), d3 : D(C) such thatd, has countable
support. Suppose there exist distributions 12 : D(A  B) and ,3:D(B C) that
make ; * ,and , # 3 hold. Then, the following distribution overA C is
a witness for the existential in 1 ( )# 3:

1f € 2 b 12 P lsgp=b= 2 ling
23 Q0 lgsyq=b= 2 ltng f(fst p;snda)

Proof. The di cult part of the proof is to show that the projections o f this distri-

bution coincide with 1 and . For this, we use the fact that » is discrete to prove
that iterative integration with respect to  , and another measurecommutes This
is the case because we can write integration with respect to, as a summation and
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we only consider measures that are continue and linear. Fomistance, to see that
the rst projection of ;3 coincides with ;:

1( 13) f =

|
o
i
N
=]

londp=6=G 23 Q. lesyg=6=G f(fstp)
!

= 1 P lsndp=b 23 O lesyg=n=G f(fstp)
i=0 |

p3
12 p: f (fSt p) 1sncKp)= bi
i=0

12 (p: f (fst p))
= 4 f

2.2 The pWhile Language

We describe games as programs in thpWhile language, a probabilistic extension
of an imperative language with procedure calls. This languge can be regarded as
a mild generalization of the language proposed by Bellare ah Rogaway [2005], in
that our language allowswhile loops whereas theirs only allow boundedor loops.
The formalization of pWhile is carefully crafted to exploit key features of Coqg
it uses modules to support an extensible expression languaghat can be adapted
according to the veri cation goal, dependent types to ensue that programs are well-
typed and have a total semantics, and monads to give semanticto probabilistic
programs and capture the cost of executing them.

We formalize programs in a deep-embedding style, i.e. the syax of the lan-
guage is encoded within the proof assistant. Deep embeddisgo er one tremen-
dous advantage over shallow embeddings, in which the langgge used to represent
programs is the same as the underlying language of the proofsaistant. Namely,
a deep embedding allows to manipulate programs as syntactiobjects. This per-
mits to achieve a high level of automation in reasoning aboutprograms through
certi ed tactics that implement syntactic program transfo rmations. Additionally, a
deep embedding allows to formalize complexity issues negtland to reason about
programs by induction on the structure of their code.

The semantics of programs is given by an interpretation funéion that takes a
program p an element of the type of programs and an initial state s, and returns
the result of executing p starting from s. In a deterministic case, both s and the
result of executing p starting from s would be deterministic states, i.e. memories
mapping variables to values. In the case ofpWhile programs, the denotation of
a program is instead a function mapping an initial state to a (sub)-probability
measure over nal states. We use the measure monad describéd 2T to de ne the
denotation of programs.
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2.2.1 Syntax

Given a setV of variable identi ers, a set P of procedure identi ers, a set E of
deterministic expressions, and a seDE of distribution expressions the instructions
I and commandsC of the language can be de ned inductively by the clauses:

Il ==V E deterministic assignment
j V s DE probabilistic assignment
j if EthenCelseC conditional
j whileEdoC while loop
j V P (E:::;E) procedure call

C::= skip nop
j1;C sequence

The inductive de nition of the language su ces to understan d the rest of the pre-
sentation and the reader may prefer to retain it for further reference. In practice,
however, variable and procedure identi ers are annotated vith their types, and the
syntax of programs is dependently-typed. Thus,x e is well-formed only if the
types of x and e coincide, andif e thenc; elsec; is well-formed only if e is a Boolean
expression andc; and ¢, are themselves well-formed. An immediate bene t of using
dependent types is that the type system ofCoqensures for free the well-typedness
of expressions and commands.

In the remainder of this section we describe in detail the fomalization of the
syntax and semantics of the language. Most readers, partidarly those not familiar
with Cogq can skim through this section without hindering the understanding of
the rest of the dissertation.

Background on the  Coq proof assistant

We built our framework on top of Coqg a general purpose proof assistant that has
been used for over two decades to formalize results in matheatics and computer
science [[The Coqg development team 2009 oq provides an expressive speci ca-
tion language based on the Calculus of Inductive Constructhns, a higher-order
dependently-typed -calculus in which mathematical notions can be formalized
conveniently. The Coqlogic distinguishes between types, of typelype, which rep-
resent sets, and propositions, of typeProp, which represent formulae: thus,a : A is
interpreted as ais an element of typeA if A is a set, and as a is a proof of A if
A is a proposition. In the latter case, we say thata is a proof object. Types can ei-
ther be introduced by standard constructions, e.g. (generbzed) function space and
products, or by inductive de nitions. Most common inductiv e types are prede ned,
including the type N of natural numbers, the type B of Boolean values, and sum
and product types. We will also use the inductively de ned types of homogeneous
and heterogeneous lists. Homogeneous lists are composedetédments of the same
type. The polymorphic inductive type of homogeneous lists $ de ned as follows:
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Inductive list A : Type :=
jnil il
jecons: Al listA! listA

The list constructor consis usually represented using an in X notation as the oper-
ator ::. Thus, the list composed of the natural numbers 1, 2 and 3, inthat order,
has type list N and could be represented agl :: 2 :: 3 :: nil). Heterogeneous lists
are composed of elements whose type may depend on a value. &iva type A and
a type-valued function P : A'! Type, the inductive type of heterogeneous lists is
de ned as follows:

Inductive hlistA (P :A! Type):listA! Type:=
j dnil : hlist nil
jdcons: 8al; P a! hlistl! hlist(a::1)

We will use A? to denote the type of A-lists (i.e. list A), and P’ to denote the type
of heterogeneoud?-lists over a list of valuesl! (i.e. hlist P 1).

Types

We formalize a dependently-typed syntax, and use the undeyling type system of
Coq to ensure for free that expressions and commands are wellffmed. In our
experience, the typed syntax provides particularly usefulfeedback when debugging
proofs and makes proofs easier by restricting reasoning abnbprograms to reasoning
about their meaningful behaviors.

The types and expressions of the language are de ned on top & module that
contains the declaration of user-de ned types and operatos. Formally, the set T of
types is de ned as:

Inductive T : Type:=
jUser :Tyser!T

jNat T
jBool : T
jLlist TIT

jPair TITIT
jSum TITIT
jOption: T!T

where Tyser denotes the set of user-de ned types. This set can be given dirent
de nitions according to the cryptographic system under ver cation.

The interpretation of types and of programs in general depen ds on a security
parameter (a natural number),
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De nition interp( :N) (t:T):=

match t with

j Userut ) interp,e Ut
j Nat ) N

j Bool ) B

j Listt ) list (interp t)

jPairt;t, ) (interp ti) (interp t»)
j Sumty t, ) (interp tq)+(interp t»)
end

For instance, to introduce a type of bitstrings of a certain length “( ) depending
on the security parameter, one would de neT,ser as follows,

Inductive  Tyeer : Type :=
j Bitstring : Tyser

and let the interpretation of Bistring for a value of the security parameter be
some representation of the sef0;1g ( ) in Coq (the type of bitvectors de ned in
the standard library of Coq provides a convenient representation).

Expressions

Expressions are built from a set of T -indexed variable namesV, using operators
from the core language, such as constructors for pairs anddis, and user-de ned
operators. All operators are declared with typing information, as speci ed by the

functions targs and tres, that return for each operator the list of types of its argu-

ments, and the type of its result, respectively. TheT -indexed family E of expressions
is then de ned as:

Inductive E:T ! Type:=

jEnat > N!E g

j Ebool > B!E gool

j Evar > 8t; \, 'E

j Eop : 80p; E(?targs op) 'E (tres op)

j Eforall : 8t Vi 'E Bool ' E (List t) I'E Bool
j Eexists: 8t; Vi 'E gool ' E (List t) 'E Bool
JEnd : 8t V\'E Bool'E (Listty 'E ¢

The rst three clauses declare constructors as coercionshinks to this mechanism
it is possible to view an element of their domain as an elemenbf their codomain,
e.g. a natural number as an expression of typeNat and a variable of typet as
an expression of typet. The fourth clause corresponds to the standard rule for
operators; the rule requires that the types of the argumentse compatible with the
declaration of the operator, as enforced by the typdE(?targs op) Of heterogeneous lists
of expressions. In this clausepp is universally quanti ed over an inductive type

that contains a xed set of operators for base types and usede ned operators.
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The last three clauses introduce operations on lists that a8 commonly used in
cryptographic proofs: they take as parameters a variablex of type t, a Boolean
valued expressione that may depend on x, and an expression of type List t, and
respectively

(Eforallx e 1) checks whether every element in | veries e when substituting a
for x. We note it as (8x 2 I: e);

(Eexistsx e 1) checks whether some elemen& in | veries e when substituting a
for x. We note it as (9x 2 |: e);

(End xel) evaluates to the rst element a in the list | that veries e when
substituting a for x, or to a designated default element of typet
if no such element is found. We usually do not write this operaor
explicitly, instead we assume that an expressiorf9x 2 I; e) implicitly
assigns to the variablex the value of (End x e ).

It is worth noting that dependent types allow for rich speci cations of operators.
For instance, one can de ne a type for bitstrings of xed length f0;1g, and a
concatenation operator that keeps track of bitstring lengths with type

8mn; fO;1g™ !'f 0;1g" !'f 0O;1g™*"

In addition to the set of deterministic expressions de ned @ove, to encode
random assignments we use a set of type-indexed distributio expressionsDE. An
element of DE; denotes some discrete distribution over values of type. The core
language includes expressions denoting the uniform distoution on natural intervals
of the form [0::n], and on Boolean values. Again, the set of distribution exprasions
of the core language can be extended by the user,

Inductive DE:T ! Type:=
j Dnat : Eyat ! DE Nat

j Dbool: DEggg

j Duser: 8t; DEysert | DE

Programs

Commands are built from a set of procedure name® indexed by the type of their
arguments and return value. Formally, the setsl of instructions and C of commands
are de ned as follows:

Inductive | : Type:=

j Assign: 8t; Vi 'E !

jRand :8t; V{!DE !l

jCond :Egpo!C!C!I

j While : Egoqi ' C !

]Ca” 8l t; P(I,[)|VIIE|’>|I
where C:= 17
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For instance, b s f0;1g (a shorthand for Rand b Dbool) is an instruction that
samples a random bit with uniform probability and assigns it to variable b. Note
that the above syntax lacks a construct for sequential compsition; instead, we use
lists to represent sequences of instructions.

De nition 2.4 (Program). A program is a pair consisting of a commandc 2 C
and an environmentE : 8l t; Py ! dec}.), which maps procedure identi ers
to their declaration. The declaration of a procedurep 2 P .y consists of its formal
parameters, its body, and a return expression,

Record decl;) £ fargs:V, ; body:C re:Eg

An environment speci es the type of the parameters and the réurn expression of
procedures, so that procedure calls are always well-typedn a typical formalization,
the environment will map procedures to closed commands, wit the exception of
adversaries whose code is unknown, and thus modeled by vabkes of type C. This
is a standard trick to deal with uninterpreted functions in a deep embedding.

We frequently make no distinction between a gameG = (c¢;E) and its main
command ¢ when the environment either has no relevance or is clear fronthe
context. In the remainder, we revert to a more natural notation to specify games:
we rely on standard notation as in [Barthe et al.|2009a,c]. Inparticular, we write
procedures that might have multiple exit points and use expicit return instructions
instead of specifying a single return expression.

2.2.2 Semantics

The semantics of commands and expressions depends on a nalnumber repre-
senting the security parameter. As we have seen, the intermtation of types and
operators may depend on this parameter, but for the sake of r@dability we omit
it most of the time. The denotation of a command is de ned relative to an initial
memory, mapping variables to values of their respective tygs. Since variables are
partitioned into local and global variables, we will sometimes represent a memoryn
as a pair of mappings(m:loc; m:glob) for local and global variables, respectively. We
let M denote the type of memories and? denote a mapping associating variables
to default values of their corresponding types.

Expressions are deterministic; their semantics is standat and given by a func-
tion

Je:Ek :M! interpt

that evaluates an expression in a given memory and returns aalue of the right
type. The semantics of distribution expressions is given bya function a
Jd : DEikoe : M!D (interpt)

that given a distribution expression d of type t and a memorym, returns a measure
over values of typet. For instance, in Section[I.Z.2 we have usetl0; 1g to denote
the uniform distribution on bitstrings of a certain length ; formally, we have
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. . X .
JO,1gke m:D f0;1g < f: 2 f(x)
x2f 0;1g

Observe that distribution expressions are not restricted b constant distributions.
Indeed, for any expression of typee 2 Enqt, the semantics of the uniform distribution
on the natural interval [0::e] depends on the evaluation ofe,

X0
J[0:€] ke m:D(N) & f: ﬁ f(i) wheren = Jel¢ m
i=0

Thanks to dependent types, the semantics of expressions amdistribution expres-
sions is total. In the following, and whenever there is no cofusion, we will drop the
subscripts in Jk and J kKo .

The (small-step) semantics of commands relates an initial dterministic state to
a sub-probability distribution over nal deterministic st ates. It uses a frame stack
to deal with procedure calls. Formally, a deterministic state is a triple consisting of
the current command ¢ : C, a memory m : M , and a frame stackF : frame’. We
let S denote the set of deterministic states,

S  Cc M frame

One step executionJkK : S ! D (S) is de ned by the rules of Figure[21; in the
gure, we usea bas a notation for Jak = b.

We brie y comment on the transition rules for calling a procedure (5th rule)
and returning from a call (2nd rule). Upon a call, a new frame 5 appended to
the stack, containing the destination variable, the return expression of the called
procedure, the continuation to the call, and the local memoy of the caller. The
state resulting from the call contains the body of the calledprocedure, the global
part of the memory, a local memory initialized to map the formal parameters to
the value of the actual parameters just before the call, and he updated stack.
When returning from a call with a non-empty stack, the top frame is popped, the
return expression is evaluated and the resulting value is aggned to the destination
variable after previously restoring the local memory of thecaller; the continuation
taken from the frame becomes the current command. If the stac is empty when
returning from a call, the execution of the program terminates and the nal state
is embedded into the monad using theunit operator.

We then de ne an n-step execution functionJK' as follows:

JsK ©  units
JsK*1 € pind JsK JK

Finally, the denotation of a command c in an initial memory m is de ned to be the
(limit) distribution of reachable nal memories:

JKm:D(M) £ f supfJ(c;m;ni)K fjny jn2 Ng

wheref; is a function that when applied to a state (c; m; F) equalsf (m) if the
state is a nal state and O otherwise, i.e.
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(skip; m; nil) unit (skip; m; nil)
(skip;m; (x;e;c; 1)t F) unit (c;(I; m: glob)f Jeke m=xg; F)
(x e c;m;F) unit (c; mf Jeke m=xg; F)
(x ¢ d;c;m;F) bind (Jdkoe m) ( v: unit (¢; mfv=xg; F))

o unit (p:body; (? f Jeke m=p:argsy; m:glob);
(x p(e);c;m;F) (x; p:re; c; m:loc) :: F)
unit (ci;c;m;F) if Jeke m = true

(if ethen ¢, elsecz;c;m; F) unit (cz;¢;m;F) if Jelke m = false

unit (c;whileedoc;c®m;F) if Jeke m = true

: - 0 -
(while e do ¢; ¢’ m; F) unit (< m:F ) if Jeke m = false

Fig. 2.1. Probabilistic one-step semantics of pWhile programs.

fina (c;miF) = B! [0;1]
o (CM;F) et f(m) ifc= s_kip" F = nil

0 otherwise
The set of nal states grows monotonically as the number of ercution steps in-
creases, which implies that the sequencé(c; m;nil)K' f; ., is increasing because
f is non-negative. Because, in addition, this sequence is ujgp bounded by 1, the
least upper bound in the de nition of the denotation of a command always exists
and corresponds to the limit of the sequence.

Figure 22 summarizes the denotational semantics of commals as equations
following from the above limit construction. The denotation of a program relates an
initial memory to a (sub-)probability distribution over me mories using the measure
monad presented in the previous section:

JK:MID (M)

Note that the function JKmaps M to D(M ), but it is trivial although less
convenientto de ne a semantic function JK from D(M) to D(M) using the
bind operator of the monad:

XK : DMM)!D (M)
JK € : bind JK

We have shown that the semantics of programs maps memories tiscrete dis-
tributions, provided expressions in DE evaluate to distributions with countable
support. We use this together with LemmalZ3 to prove the soudness of some
relational Hoare logic rules (namely, [Comp] and [Trans]) h Section[3.].
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JskipKm = unit m

Ji; cKm = bind (JiKm) JcK

X eKm = unit mfJelke m=xg

Jx & dKm = bind (Jdkoe m) ( v: unit mfv=xg)

X  p(e)Km = bind (Jp:bodyK(? f Jeke m=p:argsy; m:glob))

(m % unit (m:loc; m%glob)f Jp:rek: m°=xg)

JoiKm if Jeke m = true
JeoKm if Jelke m = false

Jif e then c; elsec,Km

Jwhile e do cKm = f: sup (n: Jwhileedoc]nKmf)
where
[whileedoclo = skip
[while e do c],,, = if ethen c; [while e do c]n

Fig. 2.2. Denotational semantics of pWhile programs.

Computing probabilities

The advantage of using this monadic semantics is that, if we se an arbitrary
function as a continuation to the denotation of a program, what we get (for free) as
a result is its expected value w.r.t. the distribution of na | memories. In particular,
we can compute the probability of an eventA (represented as a functioninM ! B)
in the distribution obtained after executing a command c in an initial memory m
by measuring its characteristic function 1, :

Pric;m:A] £ JKm 1,

For instance, one can verify that the denotation ofx s f0;1g; y ¢ f0;1gin an
initial memory m is

f: % (f (mf0O; 0=x;yg) + f (MfO; 1=x;yg) + f (mf1;0=x;yqg)+ f (mf1;1=x;yQ))

and conclude that the probability of the event (x ) y) after executing the command
above is3=4.

In what follows, when writing probabilities we sometimes onit the initial mem-
ory m; in that case one may safely assume that the memory is initidy ?, which
maps variables to default values of the right type.

2.3 Probabilistic Polynomial-Time Programs

In general, cryptographic proofs reason about e ective adersaries, consuming poly-
nomially bounded resources. The complexity notion that capures this intuition, and
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which is pervasive in cryptographic proofs, is that ofstrict probabilistic polynomial-
time [Goldreich |2001]. Concretely, a program is said to be strictprobabilistic
polynomial-time (PPT) whenever there exists a polynomial bound (in some secu-
rity parameter ) on the cost of each possible execution, regardless of the twome
of its random choices. Said otherwise, a probabilistic progam is PPT whenever the
same program seen as a hon-deterministic program terminageand the cost of each
possible run is bounded by a polynomial.

Termination and e ciency are orthogonal. Consider, for instance, the following
two programs:

¢t £ b true; whilebdob ¢ f0;1g
c; € b f0;1g; if bthen while true do skip

The former terminates with probability 1 (it terminates wit hin n iterations with
probability 1 2 "), but may take an arbitrarily large number of iterations to
terminate. The latter terminates with probability 1=2, but when it does, it takes
only a constant time. We deal with termination and e ciency s eparately.

De nition 2.5 (Termination). The probability that a program c terminates
starting from an initial memory m is Pr[c;m:true] = JcKm 1. We say that a
program c is absolutely terminating, and note it lossles&), i it terminates with
probability 1 in any initial memory,

lossles&) % 8m: Prc;m:true] =1

To deal with e ciency, we non-intrusively instrument the se mantics of our language
to compute the cost of running a program. The instrumented senantics ranges over
D(M N) instead of D(M ). We recall that our semantics is implicitly parametrized

by a security parameter , on which we base our notion of complexity. Our charac-
terization of PPT programs relies on an axiomatization of the execution time and
memory usage of expressions:

We postulate the execution time of each operator, in the formof a function
that depends on the inputs of the operator which corresponds to the so-called
functional time model;

We postulate for each datatype a size measure, in the form of &nction that

assigns to each value its memory footprint.

We stress that making complexity assumptions on operatorss perfectly legitimate.
It is a well-known feature of dependent type theories (as is he case of the cal-
culus of Cog) that they cannot express the cost of the computations they urport
without using computational re ection, i.e. formalizing a n execution model, such as
probabilistic Turing machines, within the theory itself an d proving that functions
in type theory denote machines that execute in polynomial tme. In our opinion,
such a step is overkill. A simpler solution to the problem is © restrict in as much
as possible the set of primitive operators, so as to minimiz¢he set of assumptions
upon which the complexity proofs rely.
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De nition 2.6 (Polynomially bounded distribution). We say that a family
of distributions f :D(M  N)g is (p; g-bounded, wherep and q are polynomials,
whenever for every value of the security parameter and any pair (m; n) occurring
with non-zero probability in , the size of values inm is bounded byp( ) and the
costn is bounded byg( ). This notion can be formally de ned by means of therange
predicate introduced in Section[Z.1.3:

boundedp;q; ) £ 8: range( (m;n): 8x2V:jm(x)j p()*n q())

De nition 2.7 (Strict probabilistic polynomial-time prog ram). We say that
a program c is strict probabilistic polynomial-time (PPT) i it terminat es absolutely,
and there exist polynomial transformersF; G such that for every (p; g-bounded
distribution family ~ , (bind  JcK is (F(p); g+ G(p))-bounded.

We can recover some intuition by taking = unit (m; 0) in the above de nition.
In this case, we may paraphrase the condition as follows: iftte size of values irm is
bounded by some polynomialp, and an execution of the program inm terminates
with non-zero probability in memory m®, then the size of values inmPis bounded by
the polynomial F (p), and the cost of the execution is bounded by the polynomial
G(p). Itis in this latter polynomial that bounds the cost of executing the program
that we are ultimately interested. The increased complexiy in the de nition is
needed for proving compositionality results, such as the fet that PPT programs
are closed under sequential composition.

Although our formalization of termination and e ciency rel ies on semantic def-
initions, it is not necessary for users to reason directly abut the semantics of a
program to prove it meets those de nitions. CertiCrypt implements a certi ed al-
gorithm showing that every program without loops and recurdve calls terminates
absolutely@ We also provide another algorithm that, together with the r st, estab-
lishes that a program is PPT provided that, additionally, th e program does not
contain expressions that might generate values of super-gpgnomial size or take a
super-polynomial time when evaluated in a polynomially bounded memory.

Exact bounds on execution time

Extracting an exact security result from a reductionist game-based proof requires
to lower bound the success probability of the reduction and b upper bound the
overhead incurred in execution time. Computing a bound on the success probability
is what takes most of the e ort since it requires examining the whole sequence of
games and a careful bookkeeping of the probability of eventsOn the other hand,
bounding the overhead of a reduction only requires examinig the last game in
the sequence. While we have put a great e ort in automating the computation of
probability bounds and we developed an automated method to btain asymptotic

1 1t is of course a weak result in terms of termination of probab ilistic programs, but nev-
ertheless su cient as regards cryptographic applications . Extending our formalization
to a certi ed termination analysis for loops is interesting , but orthogonal to our main
goals.
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polynomial bounds on the execution time of reductions, we di not bother to provide
a method to compute exact time bounds. To do so, we would needraalternative
cost-instrumented semantics that does not take into accounthe time spent in
evaluating calls to oracles, but instead just records the nmber of queries that have
been made. Assume that an adversanA executes within time t (without taking
into account oracle calls) and makes at mostyp, queries to oracleO;. Suppose we
have a reduction where an adversaryB usesA as a sub-procedure; assume wlog
that B only calls A once and does not make any additional oracle calls. Then, we
can argue that if B executes within time t° without taking into account the cost of
evaluating calls to A (this could easily be computed by consideringA as an oracle
for B), then B executes within time
X
t+t%+ oo, to,

whereto, upper bounds the cost one query to oracl®;.

2.4 Adversaries

In order to reason about games in the presence of unknown adssaries, we must
specify an interface for adversaries and construct proofsnder the assumption that
adversaries are well-formed against their speci cation. Asuming that adversaries
respect their interface provides us with an induction prindple to reason over all
(well-formed) adversaries. We make an extensive use of thisxduction principle:
each time a proof system is introduced, the principle allowsus to establish proof
rules for adversaries. Likewise, each time we implement a pgram transformation,
the induction principle allows us to prove the correctness bthe transformation for
programs that contain procedure calls to adversaries.

Formally, the interface of an adversary consists of a triple(O; RW ; R), whereO
is the set of procedures that the adversary may callRW the set of variables that it
may read and write, andR the set of variables that it may only read. We say that an
adversaryA with interface (O; RW ;R) is well-formed if the judgment ™ s A can be
derived from the rules in Figure[Z3. Note that the rules are gneric, only making
sure that the adversary makes a correct use of variables andrpcedures. These
rules guarantee that a well-formed adversary always initidizes local variables before
using them, only writes global variables inRW , and only reads global variables in
RW [R . For convenience, we allow adversaries to call proceduresitside O, but
these procedures must themselves respect the same interéac

Additional constraints may be imposed on adversaries. For gample, exact se-
curity proofs usually impose an upper bound to the number of alls adversaries
can make to a given oracle, while some properties, such dblD-CCA2 (see Y2512
below), restrict the parameters with which oracles may be clied at di erent stages
in an experiment. Likewise, some proofs impose extra condins such as forbidding
repeated or malformed queries. These kinds of properties oabe formalized using
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| skip:| | i:I\O. 19° ¢:O writ?ble(x) fv(e) | writ?ble(x) fv(d) |
I " i;c:0 I ° x e:l[f xg I x s d:lI [f xg

fvie) I I " c:01 1 :02 fv(e) 1 1 " c:l

| * if ethency elsec,:01\ Oz I * while e do c:|

fv(e) | writable(x) p20O fv(e) | writable(x) “w B
I° x p(e):l[f xg I > x B (e):l [f xg
RW[R[A :args A :body:O fv(Aire) O
A

writable(x) € local(x) _ x 2 RW

Fig. 2.3. Rules for well-formedness of an adversary against interface (O; RW ;R). A
judgment of the form | ~ c¢: O can be interpreted as follows: assuming variables in |
may be read, the adversarial code fragmentc respects the interface and after its execution
variables in O may be read. Thus, if | ~ ¢c:O,then| O.

global variables that record calls to oracles and verifyingas post-condition that all
calls were legitimate.

2.5 Making Security Properties Precise

Before going any further in the formalization of cryptographic proofs, we need to
be sure that the results that we prove are meaningful. Secuty de nitions in cryp-
tography have so many subtleties that it is not clear that the whole cryptographic
community agrees even on the most fundamental of these de tions. To illustrate
this point, let us analyze in detail two pervasive de nition s that we use in subse-
qguent chapters: the security of a signature scheme againsixestential forgery under
adaptive chosen-message attacksEf--CMA security), and the indistinguishability
under adaptive chosen-ciphertext attacks (ND-CCAZ2 security) of an encryption
scheme.

2.5.1 EF-CMA Security
We start by recalling the de nition of digital signature sch emes.

De nition 2.8 (Digital signature scheme). A digital signature scheme is com-
posed of a triple of algorithms:

Key generation: Given a security parameter , the key generation algorithmKG( )
returns a public/secret key pair (pk; sk);

Signing: Given a secret keysk and a messagem, the signing algorithm
Sign(sk; m) produces a signature ofm under sk;
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Veri cation: Given a public keypk, a messagem, and a purported signature
for m, the veri cation algorithm Verify(pk; m; ) returns a Boolean
value indicating whether the signature is valid or not.

Key generation and signing may be probabilistic, while theeri cation algorithm is
deterministic. We require that veri cation always succeeds ér authentic signatures:
for every pair of keys (pk;sk) that can be output by the key generation algorithm,
and every messagen, it must be the case thatVerify(pk; m; Sign(sk; m)) = true.

We informally describe the way in which EF-CMA security is typically de ned.
The experiment begins by choosing a public veri cation keypk and a secret signing
key sk, using the key-generation algorithm of the signature schera. The public key
is given to the forger, who can ask for the signature of messag of its choice to a
signing oracle and eventually halts and outputs a messagm together with a pur-
ported signature . The forger wins when the signature veri es. We say that the
scheme is secure when the winning probability of any probalistic polynomial-time
forger is negligible. Since the forger could trivially win by asking for the signature
of m, the forger is not allowed to querym to the signing oracle. Figure[2.4 depicts
this experiment as a game.

Game Gi: Oracle Sign, (m):
S nil; S m:S;
(pk;sk) KG (); Sign(sk ; m);
(m; ) A (pk) return

Fig. 2.4. The EF-CMA experiment; the signing oracle is instrumented to record th e queries
made by the forger.

The above de nition seems unambiguous at rst sight. There are however two
ways of forbidding the adversary from queryingm to the signing oracle. The rst
is simply to reject adversaries that may query m with non-zero probability; this
amounts to restrict the quanti cation over adversaries ins tead of considering all
e cient forgers one considers only those forgers that do notquery the message
they output to the signing oracle. The second way is to test a steriori whether
the adversary queriedm to its oracle, and to declare that it lost in this case.
Following [Bellare et al. [2009], we call the former de nitional style the exclusion
(E) style and the latter the penalty (P ) style. Both styles are common and
used interchangeably in the literature; for instance [Belbre and Rogaway! 1996;
Katz and Wang 2003] use the penalty style while[[Bellare and Rgaway 1993] uses
the exclusion style. The question is whether the two styles esult in equivalent
de nitions or not.

It should be clear that security in the penalty style implies security in the
exclusion style. To see this, consider any e cient forgerA valid in the exclusion
style de nition. The forger is also valid in the penalty styl e de nition and it achieves
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the same success probability. Since the probability oA ever querying the message
m whose signature it forges is 0, we have

Pr Ggr: Verify(pk;m; ) =Pr Gg: Verify(pk;m; )Am2S

Implication in the other direction (i.e., that security in t he exclusion style implies
security in the penalty style de nition) is not as evident. G iven an adversary A
that forges a signature for a fresh messagm with non-negligible probability, but
that may ask the signature of the messagen to the signing oracle with non-zero
probability, can we construct an adversary that never queriesm to the signing oracle
and achieves comparable success in forging a signature? Tligeorem we present
next proves that we can and, what is more, without any probablity loss.

Theorem 2.9. If a signature scheme isEF-CMA secure according to the exclusion
style de nition, then it is secure according to the penalty syle de nition.

Proof. Let A be an adversary against theEF-CMA security of the scheme in the
penalty style de nition. We exhibit an adversary B that is valid in the exclusion
style de nition and outputs a successful forgery with at least the same probability
asA:

Adversary B(pk) : Oracle Sign, (m) :
S il S m:S;

(m; ) A (pk); Signg (m);

if m2Sthenm s f0;1g"nS | return

return (m; )

The forger B usesA as a subroutine; it intercepts the signing queries thatA makes
and answers them using oracléSign, . This oracle just records the message queried
and forwards it to the original signing oracle. When A outputs a purported forgery
(m; ), B checks ifm ever appeared in a signing query and if it is the case, replase
m with a fresh message. We have tham 2 S and S = S are post-conditions of
gameGE, which implies that B is a valid adversary according to the exclusion style
de nition. In addition,

Pr Ggr: Verify(pk;m; YA m2S  Pr Gg: Verify(pk;m; )
u

For a matter of taste and de nitional clarity, we de ne EF-CMA security using
the penalty style.

De nition 2.10 (EF-CMA security). A signature scheme(KG,; Sign Verify) is
secure against existential forgeries under chosen-messag#acks if the probability

Pr Gig : Verify(pk;m; )*m2S

is negligible for any probabilistic polynomial-time adverary A.
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The penalty and exclusion style de nitions of EF-CMA security turned out to be
perfectly equivalent. Indeed, this equivalence can be regded as folklore. This may
lead us to think that there is no point in analyzing this kind o f subtle di erences
in security de nitions. But such a way of thinking is perilou s. We have been lucky
that both formulations of EF-CMA security are equivalent. We will see in the next
section that being sloppy can sometimes lead to consider agjeivalent de nitions
that in reality are not.

2.5.2 IND-CCA2 Security

The notion of IND-CCA2security for an encryption scheme is de ned relative to a
two-phase experiment where the adversary has access to a dggtion oracle. The
experiment begins by generating a pair of keygpk; sk) and giving the public key
pk to the adversary. In the rst phase the adversary chooses twanessagesng and
m;. The challenger then tosses a fair coirb, encrypts my under pk and gives the
resulting ciphertext ¢ back to the adversary. The adversary ends the second phase
by outputting a guess b for the hidden bit b. Figure [Z.3 depicts this experiment as
a game. We say that the scheme i$ND-CCAZ2secure if no probabilistic polynomial-
time adversary A guesse® correctly with a probability non-negligibly greater than
1=2.

(Game Giocea : Oracle Da(c): )
Lp nil; Lp (€ger;C) : Lp;
(pk;sk) KG () m D (sk;o);
(mo;m1) A 1(pk); return m
b s f0; 1g;
¢ E (pk;my);

Coef true;
B A 2(6)
(. J

Fig. 2.5. The IND-CCA2 experiment; the decryption oracle is instrumented to recor d the
queries made in each phase.

Observe that the adversary could trivially win by asking the decryption oracle to
decrypt €. Consequently, the de nition forbids the adversary from querying € to the
decryption oracle. As in the de nition of EF-CMA security in the previous section,
there are two ways of enforcing this restriction, in a penaly style or in an exclusion
style. In addition, we now face another dilemma: should we dbw the adversary
to query € to its oracle in the rst phase of the experiment or should we brbid
such type of queries altogether? These two dimensions givase to four di erent
ways of formally de ning IND-CCAZ2security. Namely, in a penalty style, restricting
the oracle queries only in the second phase of the experime(iIND-CCA2-SH or in
both (IND-CCA2-BB, and in an exclusion style, restricting the queries only inthe
second phase IND-CCA2-SE or in both phases (ND-CCA2-BB. There are some
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obvious relations between these de nitions. As in the case fo EF-CMA security,
security in a penalty style de nition implies security in th e corresponding exclusion
style de nition. In a similar manner, security in the versio n of the de nitions where
the adversary is forbidden to query the challenge ciphertek ¢ just in the second
phase implies security when this prohibition is extended tothe rst phase of the
experiment. Figure 28 summarizes these and the remainingan-trivial relations
between the di erent formulations of IND-CCAZ2security.

IND-CCA2-SP g IND-CCA2-BP

IND-CCA2-SE ¢ IND-CCA2-BE

Fig. 2.6. Relations between the di erent formulations of IND-CCA2 security. An impli-
cation X! Y means that security according to de nition X implies security according to
Y. A negated implication is a separation result.

Surprisingly, neither of the B style de nitions implies s ecurity in the corre-
sponding S variant. What is more, the penalty and the exclusion style de nitions
are not equivalent if the adversary is forbidden from queryng € to its oracle in
both phases of theIND-CCA2 experiment. We will give a proof of the implication
IND-CCA2-SE! IND-CCA2-SPand a rough idea of how to construct pathologi-
cal schemes that justify the separation resultsIND-CCA2-BP9 IND-CCA2-SPand
IND-CCA2-BE9 IND-CCA2-BP, the separation ofIND-CCA2-SEand IND-CCA2-BE
follows from the diagram. For further details the reader mayrefer to |Bellare et all
2009], where these results were rst reported.

Theorem 2.11. If an encryption scheme(KG;E; D) is IND-CCA2-SEsecure, then
it is IND-CCA2-SPsecure as well.

Proof. We show that for any adversary A = (Aj;A,) against the IND-CCA2-SP
security of the scheme, there exists alND-CCA2-SEadversary B that guesses the
hidden bit b with at least the same probability and does not query the chalenge
ciphertext in the second phase of the experiment.

In the rst phase, B behaves exactly asA. When B gets the challenge ciphertext
¢, it calls A,(¢) in a simulated environment where it replaces the decryptionoracle
with an oracle of its own; B, returns whatever A, returns. When A, makes a
decryption query c, if c & €, the simulated oracle responds by forwarding the query
to the original oracle, otherwise it returns some xed messge ? . It is easy to see

that B, never queries the challenge to the decryption oracle. Moreover, we have
h [ h [
Pr Gip cca:D=Db" (trug;¢)2Lp =Pr hGF,’\‘D coa iD= bi" (true;6) 2 Lp

Pr GBp cca:b=Db

which concludes the proof. u
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Theorem 2.12. The three separation results from Figure[Z6 hold.

Proof.
IND-CCA2-BP9 IND-CCA2-SP:

Let (KGs ;f;f 1) be a family of trapdoor one-way permutations and(KG; E; D) an
IND-CCA2-BPsecure encryption scheme. We show how to construct an encryipn
scheme(KG; E; D) which is IND-CCA2-BPsecure but not IND-CCA2-SPsecure.

KG( ) : E((pk; pks ; 9);m) D((sk;®);sko):
(pk;sk) KG (); if f (pk;m) =4 then | if s=0 then
(pks ;sks) KG ¢();| return1k 1k return D(sk; ©)
% s f0;1g%; else else

y  fpki;R); c E (pk;m); if c=1¥ then
pk  (pk; pke ; ¥); returnOk c return R

sk (sk;®); else return?
return (pk; sk)

The above scheme is devised in such a way that the ability of aadversary to query
the challenge ciphertext in the rst phase leads to an attack but this attack is no
longer possible if such a query is disallowed. The intuitionis to introduce a weak
messagek with a single ciphertext (1k 1%). This message should be hard to compute
without the secret key of the scheme, but it can be trivially obtained by asking for
the decryption of (1k1%). In the other hand, the encryption algorithm of the scheme
should be able to e ciently test if a given message equals theveak message&. We
include the messageR in plain as part of the secret key of the scheme, but conceal
its value in the public key using a one-way permutation.

To show that the above scheme is notND-CCA2-SPsecure, consider the follow-
ing adversary (A1;A>»):

Adversary Ai(pk): | Adversary Aj(c):

mo D (1k1¥); if c=1 k 1¥ then return0
m; s f0;1g nfmeg; | else returnl

return (mg; my)

This adversary guesses the hidden bit in thd ND-CCA2experiment with probabil-
ity 1. However, it queries the challenge ciphertext to the deryption oracle with
probability 1=2 during its rst phase, and therefore this adversary does notdo any
better than a random guess according to the winning conditio of the IND-CCA2-BP
variant.

To see why the scheme idND-CCA2-BP secure, observe that the only way to
guess the hidden bitb with probability signi cantly greater than 1=2 is to either
break the security of the original encryption scheme, or to smehow obtain the
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value of the weak messageé. Indeed, given an adversaryB that breaks the IND-

CCA2-BPsecurity of the scheme with non-negligible probability, ore can construct
an adversary A against the IND-CCA2-BP security of the original scheme and an
inverter | for the one-way trapdoor permutation such that at least one d them

succeeds with non-negligible probability [Bellare et all 09, Theorem 3.1].

IND-CCA2-BE9 IND-CCA2-BP:

Let (KG;E;D) be an encryption schemelND-CCA2-BE secure. Again, using a
trapdoor one-way permutation (KGs ;f;f 1) we construct an encryption scheme
(KG; E; D) which is IND-CCA2-BEsecure but notIND-CCA2-BPsecure.

KG( ) : E((pk; pks ; 9); m) : D((sk;®);skc):
(pk;sk) KG (); if f (pks;m) =4 then | if s=0 then
(pks;sks) KG ()| w s f0;1g%; return D(sk; c)
% s £0;1g%; return 1 k w else

¢ f(pks;R); else if jcj = k then
pk  (pk;pk ;¥); c E (pk;m); return 2

sk (sk;R); return Ok c else return?
return (pk; sk)

To show that the above scheme is noIND-CCA2-BPsecure, consider the following
adversary (A1;A»2):

Adversary Ai(pk): | Adversary Aj(skc):
mo D (1k1¥); if s=1 then return0
m; s f0;1g nfmeg; | else returnl

return (mg; mj)

This adversary guesses the hidden bit in thelND-CCA2 game with probability 1
and queries the challenge ciphertext to the decryption orale only with probability
2 k=2, Therefore, its winning probability according to IND-CCA2-BPis 1 2 k=2,
Observe, however, that this adversary is not valid accordig to the IND-CCA2-BE
variant because it queries the challenge ciphertext to the dcryption oracle with
non-zero probability.

To see why the scheme iSND-CCA2-BEsecure, observe that the only way to
guess the hidden bitb with probability signi cantly greater than 1=2 is to either
break the IND-CCA2-BPsecurity of the original encryption scheme, or to somehow
obtain the value of the weak message. But a valid adversary cannot obtain the
value ® from the decryption oracle because any ciphertext of the fam (1 k ¢) might
be the challenge ciphertext with probability 2 k=2. Therefore, ® is concealed by
the one-way permutation and any adversary that succeeds in lotaining it can be
used to invert the permutation with non-negligible probability.
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IND-CCA2-BE9 IND-CCA2-SE

Follows from the above separation results and the diagram irthe gure. u

In the remainder whenever we talk aboutIND-CCA2security we will be referring
to the IND-CCA2-SEvariant of the de nition, which is together with IND-CCA2-SP
the strongest variant according to the taxonomy in Figure [Z8.

De nition 2.13 (IND-CCA2 security). An encryption scheme (KG;E; D) is
IND-CCA2 secure if the advantage
h i

Pr Glpcea :B=b >

is negligible for any probabilistic polynomial-time adverary A that does not query
the decryption oracle with the challenge ciphertext during theecond phase of the
IND-CCA2 experiment.
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Reasoning about Games

According to Shoup [2004], steps in game-based cryptographic proofsax be
classi ed into three broad categories:

1. Transitions based on indistinguishability, which are typically justi ed by ap-
pealing to a decisional assumption (e.g. thedDDH assumption);

2. Transitions based on failure events, where it is argued tht two games behave
identically unless a failure event occurs;

3. Bridging steps, which correspond to refactoring the codef games in a way that
is not observable by adversaries. This is in general done torppare the ground
for applying a lossy transition of one of the above two classes.

A bridging step from a gameG; to a gameG; typically replaces a program fragment
c1 by an observationally equivalent fragmentc,. In general, however,c; and c, are

observationally equivalent only in the particular context where the substitution is

done. We justify such transitions through a relational Hoare logic that generalizes
observational equivalence through pre- and post-conditios that characterize the

context where the substitution is valid. This relational Ho are logic may as well be
used to establish (in)equalities between the probability ¢ events in two games (as
shown by the rules [PrEq] and [PrLe] below) and to establish pogram invariants

that serve to justify other program transformations or more complex probabilistic

reasoning.

3.1 Probabilistic Relational Hoare Logic (pRHL)

The relational Hoare logic that we propose elaborates on anéxtends to probabilis-
tic programs Benton's 2004 relational Hoare logic. Bentors logic uses judgments
of the form ~ ¢; C: ) , that relate two programs, c; and c;, w.rt. a
pre-condition and a post-condition , both de ned as relations on deterministic
states. Such a judgment states that for every pair of initial memoriesmj; m, sat-
isfying the pre-condition , if the evaluations of ¢; in m; and c¢; in m; terminate

41
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with nal memories m$ and mJ respectively, thenm§ m 9 holds. In a proba-
bilistic setting, the evaluation of a program in an initial m emory yields instead a
(sub-)probability distribution over program memories. In order to give a meaning
to a judgment like the above one, we therefore need to lift redtions over memories
to relations over distributions.[J We use the mechanism presented in Sectidn 3.1.

De nition 3.1 (pRHL judgment). We say that two programsc; and c; are
equivalent with respect to pre-condition and post-condition i

o G ) € 8mymym; my, =) (JerKmyp) # (JezKmy)

De nition 3.2 (Semantic equivalence). We say that two programsc; and c;
are semantically equivalent, and note it as ¢ ¢, if they are equivalent w.r.t
equality on memories as pre- and post-condition.

Rather than de ning the rules for pRHL and proving them sound in terms of
the meaning of judgments, we place ourselves in a semantictdiag and derive the
rules as lemmas. This allows to easily extend the system by dizing extra rules, or
even to resort to the semantic de nition if the system turns out to be insu cient.
Figure [31 gathers some representative derived rules. To iprove readability, we
de ne for a Boolean expressiore the relations

ehli € m 1 my: JeKm; = true e2i € m 1 my JeKm, = true

As pRHL allows for arbitrary relations, we freely use higherorder logic; in partic-
ular, PERand SYM are predicates over relations that stand forpartial equivalence
relation and symmetric relation respectively.

Most rules admit, in addition to their symmetrical version of Figure 31, one-
sided (left and right) variants, e.g. for assignments

m; m = (mafJekn;=x,0)

M 2 Assn1
X1 e skip: ) [Assni]

The rule [Case] allows to reason by case analysis on the evaliion of an arbitrary
relation in the initial memories. Together with simple rules in the spirit of

¢ c: MNehli)
" if ethency elsec, c: " ehli)

[CondlT]

it subsumes [Cond] and allows to prove judgments that othenise would not be
derivable, such as the semantic equivalence of the program@f e then c; elsecy)
and (if : e thenc; elsec;):

1 An alternative would be to develop a logic in which and are relations over distri-
butions. However, we do not believe such a logic would allow a similar level of proof
automation.
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o G ) g &g )

© ski skip : Ski -
P p: ) [Skinl a;c el )

[Seq]

m; m o =(mifJetkmi=x1g) (m2fJesKmy=x20)

Assn
X1 € X2 €@ ) [ ]

m: moz =) (JhiKmi) * (Jd2Km,)
wherevis Vv 2 =(mifvi=xig) (mafva=x20)

‘X1$d1 X2$d2: ) [nd]

mi m2 =) JerKmi = JeoKm:
‘o G Mehli) & Mroehli)

* if e, thenc; elsed if e thenc, elsecd : ) [Cond]
m;: m; =) JaKmi=JpKm, "o c: N ehl) .
< - - - [While]
whilee; doc; whilee; doc @ ) ANcoephdi
0 N . 0 0 0
6 C: °)
S Sub
. C: ) [Sub]
o G ) SYM( ) SYM( )[S !
S m
C C: ) y
o G TG G PER PER
"¢ c[Re] ! 2 ) S 2 * ) ) ( )[Trans]
i C: )
N . A 0 N . A - 0
C1 C2 i ) C1 C2 . . ) [Case]
G C: )
Fig. 3.1. Selection of derived rules of pRHL.
3 - Sub,Re
G C:=7%N: ei) = [ ] Cond2F
< - - on
c1 if:ethencyelsec, := " eli) = [ |
< - - [Sub]
cp if i ethency elsec; : = ~ ehli)
— . . [Cond1T]
if ethency elsec, if : ethenc; elsec; : = " ehli) =
[Case]

*if ethency elsec, if : ethenc, elsec;
We use [Case] as well to justify the correctness of data ow aalyses that exploit
the information provided by entering branches.

The rule [Sym] can be generalized by taking the inverse of theelations instead
of requiring that pre- and post-condition be symmetric:

¢ G )
‘o 6 1)

7Inv]

The rule [Trans], although appealing, is of limited practical use. Consider, for in-
stance, independent pre- and post-conditions of the form
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def def
mp mz = 1m” 2mp mg mp= ;MmN pmp
In order to apply the rule [Trans], we are essentially forcedto have
1= 2 and 1= 2

and we must also choose the same pre- and post-condition foh¢ intermediate
gamec,. This constraints make the rule [Trans] impractical in some cases; we use
instead the rule [Comp] to introduce intermediate games in hose cases:

o G ) ‘o e 9 O
‘o C3: 9) 0

[Comp]

The soundness of this rule relies on Lemm@a=2.3 and on the fachat the denotation
of a program maps an initial memory to a distribution with cou ntable support. This
is true if we only allow values to be sampled from distributions with countable sup-
port, a reasonable restriction that does not a ect our application to cryptographic
proofs.

We can specialize rule [Rnd] when the distributions from whee random values
are sampled have countable support. In this case, there is d@rapler condition that
makes the hypothesis of the rule hold. We say that two distributions ; : D(A) and

2 : D(B) with countable support are equivalent modulo a relatonR A B,
and noteit 1' r 2, when there exists a bijectionf : suppor{ 1) ! suppor( »)
such that

8a2 suppor( 1): 1lfag= 2lfr(ag " R(a;f(a)

We can then prove that the following rule is sound:

m;p mo =) Jdi Ky JdoKm, vi v o= (mlfvlleg) (mngZZng)
Xy s dy Xo s dy: )

[Perm]

If d; and d; are both interpreted as uniform distributions over some setof values,
the premise of the rule boils down to exhibiting a bijectionf between the supports
of (JdiKm;) and (Jd2Kmy) such that (v;f (v)) holds for any v in the support of
Jd;Km;. To see that the rule is sound, note that ; ' g » implies ; R* ,; it
su ces to take the following distribution as a witness for th e existential:

£ bind 1 (v: unit(v;f(v)))

Hence, the soundness of the above rule is immediate from theosndness of rule
[Rnd]. Section[3.Z.2 shows that rule [Perm] is enough to pra¥ several program
equivalences appearing in cryptographic proofs. Howevebserve that rule [Perm]
is far from being complete as shown by the following program guivalence that
cannot be derived using just this rule:

“a s [0:1] b [0:3];a bmod2:true) =iaq

One cannot use the above rule to prove such an equivalence lscse the supports
of the distributions from where random values are sampled irthe programs do not
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have the same size and hence it is not possible to nd a bijeatin relating them. We
can further generalize the rule to prove the above equivalete by requiring instead
the existence of a bijection between the support of one distbution and a partition
of the support of the other, as in the following rule:

m; my =) let Sy= suppor(Jd;Kms); S, = suppor(Jd,Kmsy) in
of :SIP (Sy): f(v)= Sy, ™ (Bv1 6 v 2 Spif(vy)\ f(vp)=;)"
V281
8v2S:: 1liyg= 2l N 8w2f(v): (mfv=xig) (Mofw=x>0)

T X1 s dp Xo $ dy: )

The following two rules allow to fall back from the world of pRHL into the world
of probabilities, in which security statements are expressd:

mg mo, ¢ C: ) =) (Ahl ( Bh2i)
Prici;my Al = Pr{c;;my: B]

[PrEq]

and analogously,

mg my ¢ C: ) =) (Ahli =) Bh2)
Prici;my : A] Pricz;m; : B]

[PrLe]

By taking A = B = true we can observe that observational equivalence enjoys some
form of termination sensitivity:

(\ C1 Co ! ) )A mis mo» :) JooKmy 1 = Jo;Kmy 1

We conclude with an example that nicely illustrates some of he intricacies of
pRHL. Let c= b s f0;1gand = (bhli = b2i). We have for any pair of initial
memories(JcKm;) # (JcKmsy). Indeed, the following distribution is a witness for
the existential of the lifting:

f = %f (m1f O=bg; m,f O=tg) + %f (mf 1=hy; m,f 1=hg)

Perhaps more surprisingly, we also havéJcKm;) : # (JcKms), for which it su ces
to take the following distribution as a witness for the existential:

0f = %f (m1f O=hy; m,f 1=ty) + %f (m1f 1=kg; mof O=ly)

Thus, we have at the same time™ ¢ c: true) and® ¢ c:true): (but
of course not™ ¢ c:true) fals@ and as a consequence the obvious rule

g G ) g 6o ) O
o G ) A~ 0O

is unsound. While this example may seem unintuitive or evenniconsistent if one
reasons in terms of deterministic states, its intuitive signi cance in a probabilistic
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setting is that observing either or: is not enough to tell apart the distributions

resulting from two executions of c. This example shows why lifting a relation to
distributions involves an existential quanti cation, and why it is not possible to
always use the product distribution as a witness (one cannotestablish neither of
the above judgments using the product distribution). This interpretation of pRHL

judgments is strongly connected to the relation between redtional logics and infor-
mation ow [Amtoft et al. 2006; Benton 2004] formally charac terized for instance
by Benton's embedding of a type system for secure informatio ow into RHL.

As an additional example, observe that we have

Tx s fO1g;y s f0;1g x s fO;1gy  x:true) =gyq
Tx s fOlgy ¢ f0O;lg x s f0;1g;y  x:true) =gy

but clearly the following judgment does not hold
Tx s fOlg;y ¢ f0O;1g x s fO1g;y  x:true) =gyyg

since after executing the program on the right-hand side thevalues of x and y
always coincide while this happens only with probability 1=2 for the program on
the left-hand side.

3.1.1 Observational Equivalence

Observational equivalence is derived as an instance of rdianal Hoare judgments
in which pre- and post-conditions are restricted to equaliy over a subset of pro-
gram variables. Observational equivalence of programs;; c; w.r.t. an input set of
variables | and an output set of variablesO is de ned as

N | def A . — —_—
Ct'oC = G CG:=1) =o

The rules of pRHL can be specialized to the case of observatial equivalence. For
example, for conditional statements we have

mi=; my =) JaKmi=JpKm, “a'be ' b

*if e thenc elsec) ' | if e thenc, elsec)

It follows that observational equivalence is symmetric andtransitive, although it is
not re exive. Indeed, observational equivalence can be seeas a generalization of
probabilistic non-interference: if we takel = O = L, the set of low variables, then
cis non-interferenti " c¢' | c.

Observational equivalence is more amenable to mechanizatn than full- edged
pRHL. To support automation, CertiCrypt implements a calculus of variable de-
pendencies and provides a functioreqobs in, that given a program ¢ and a set
of output variables O, computes a set of input variablesl such that * ¢ ' {, c.
Analogously, it provides a function eqobs out, that given a set of input variables
I, computes a set of output variablesO such that * ¢' 4 c. This suggests a simple
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procedure to establish a self-equivalence of the form c¢' 5 c: just compute a set
1%such that > ¢ 00 c using eqobs in and check whetherl© |, or equivalently,
compute a setO®such that * ¢' . ¢ using eqobs out and check whetherO  O°.

CertiCrypt provides as well a (sound, but incomplete) relational weakst pre-
condition calculus that can be used to automate proofs of prgram invariants; it
deals with judgments of the form

" G ) =0

and requires that the programs have (almost) the same contrb ow structure.

3.2 Bridging Steps

CertiCrypt provides a powerful set of tactics and algebraic equivaleres to automate
bridging steps in proofs. Most tactics rely on an implementdion of a certi ed opti-
mizer for pwhile . Algebraic equivalences are provided as lemmas that follorom
algebraic properties of the interpretation of language costructs.

3.2.1 Certi ed Program Transformations

We automate several transformations that consist in applyng compiler optimiza-

tions. More precisely, we provide support for a rich set of tansformations based
on dependency and data ow analyses, and for inlining procedre calls in programs.
Each transformation is implemented as a function inCertiCrypt that performs the

transformation itself, together with a rule that proves its correctness and a tactic
that applies the rule backwards.

Transformations based on dependencies

The functions eqobs in and eqobs out and the relational Hoare logic presented in
Section[3.1 provide the foundations to support transformatons such as dead code
elimination and code reordering.

We write and prove the correctness of a functioncontext that strips o two
programs ¢; and ¢, their maximal common context relative to sets | and O of
input and output variables. The correctness ofcontextis expressed by the following
rule

context(l;¢1;¢2;0) = (122309~ @' Lo

alh G
The tactic eqobs_ctxt applies this rule backwards. Using the same idea, we imple-

ment tactics that strip o two programs only their common pre x ( eqobs_hd) or
sux ( eqobs_tl).
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We provide a tactic (swap that given two programs tries to hoist their common
instructions to obtain a maximal common pre x[, which can then be eliminated
using the above tactics. Its correctness is based on the rule

Tc't g 6 TG’ g ¢ modies(c;;01) modies(cy; Oy)
01\022; |1\ 0O, = ; |2\ O, =;
TC; G GG

wheremodi es(c; X) is a semantic predicate expressing that prograne only modi es
variables in X . This is formally expressed by

8m: range(m % m =yn,x Mm% (JcKm)

which ensures that reachable nal memories coincide with the initial memory except
maybe on variables inX . The tactic swapuses an algorithm that over-approximates
the set of modi ed variables to decide whether two instructions can be swapped.

We provide a tactic (deadcode) that performs dead code elimination relative
to a set O of output variables. The corresponding transformation belaves more
like an aggressive slicing algorithm: it removes portions bcode that do not a ect
variables in O and performs at the same time branch prediction (substituting ¢;
for if true then c; elsecy), branch coalescing (substituting c for if e then c elsec),
and self-assignment elimination. Its correctness reliesrothe rule

modi es(c; X) losslesg) fv( )\ X =;
T ¢ skip: )

Optimizations based on data ow analyses

CertiCrypt has built-in, generic, support for such optimizations: given an abstract
domain D (a semi-lattice) for the analysis, transfer functions for assignment and
branching instructions, and an operator that optimizes expressions in the language,
we construct a certi ed optimization function optimize: C! D !C D. When
given a commandc and an element 2 D, this function transforms c into its op-
timized version c® assuming the validity of . In addition, it returns an abstract
post-condition °2 D, valid after executing ¢ (or c%. We use these abstract post-
conditions to state the correctness of the optimization andto apply it recursively.
The correctness ofoptimizeis proved using a mixture of the techniques of/[Benton
2004] and [Bertot et al.|2006; Leroy 2006]: we express the vdity of the informa-
tion contained in the analysis domain using a predicatevalid( ; m) that states the
agreement between the compile time abstract values in and the run time memory
m. Correctness is expressed in terms of a pRHL judgment:

let (% 9:= optimizgc; )in~c & ) o

2 One could also provide a complementary tactic that hoists in structions to obtain a
maximal common su X.
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def

where my m,; £ mi = my " valid ;m1). The following useful rule is derived
using [Comp]:
miy m, =) valid;m;) optimizgcy; )=(c); ) " c: )
o G )
Our case studies extensively use instantiations of [Opt] tqperform expression prop-

agation (tactic ep). In contrast, we found that common subexpression eliminaion
is seldom used.

[Opt]

3.2.2 Algebraic Equivalences

Bridging steps frequently make use of algebraic propertiesf language constructs.
The proof of semantic security ofEIGamaluses the fact that in a cyclic multiplicative
group, multiplication by a uniformly sampled element acts as a one-time pad:

T X 8 Zg; g* "t gy ¢ Zg od

In the proof of IND-CCA2 security of OAEP described in Section[6.1l we use the
equivalences

x s fO1g¢ y X z'Iig;zgyﬂifo;lgk;x y z

and (for a permutation f):
Cx s f0;19¢ y s f0;1g; 2z f(xky)' (2 ¢ fO;1g¢

We show the usefulness of rule [Perm] by proving the rst of these two equivalences,
known as optimistic sampling, that we also used in YT.Z]2. De ne

=%
D

zhli = zh2i

xhli = xh2i™ yhli = yin zhli = zh2i
myfxhli  zhli=yg m fyhi zhi=xg
xhli = y2i  zh2iN zhli = zhi

{=N {=N
o 1z [l

By rule [Assn] we have
'y X oz X oy z: ) (3.1)
We apply rule [Perm] to prove
“x s fO;1g¢ y s fO1gf: ) (3.2)

For doing so we must show that for any pair of memoriesan;; m, that coincide on
z there exists a permutationf on f0; 1g¢ such that

8v2f0;1g:v=f(v) may(z)® mi(z) = my(2)

Take f (v) € v my(2) to be such a permutation. Conclude from [3:1) and [3.2)
by a nal application of rule [Seq].
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3.2.3 Inter-procedural Code Motion

Game-based proofs commonly include bridging steps consiegj in a semantics-
preserving reordering of instructions. When the reorderimg is intra-procedural, the

tactic swappresented in the previous section generally su ces to justfy the trans-

formation. However, proofs in the random oracle model (se€lY4.2 for an example
of a random oracle) often include transformations where radom values used in-
side oracles are sampled beforehand, or conversely, whemngpling a random value
at some point in a game is deferred to a later point, possiblyn a di erent proce-

dure. The former type of transformation, called eager samphg, is useful for moving
random choices upfront: a systematic application of eagerampling transforms a
probabilistic game G that samples a xed number of values into a semantically
equivalent gameS; G° where S samples the values that might be needed irG, and

Glis a completely deterministic program to the exception of adersaries that may
still make their own random choicesd The dual transformation, called lazy sam-
pling, can be used to postpone sampling random values untilhey are actually used
for the rst time thus, one readily knows the exact distribut ion of these values
by reasoning locally, without the need to maintain and reasm about probabilistic

invariants. In this section, we present a general method to pove the correctness of
inter-procedural code motion. The method is based on a logiéor swapping state-
ments that generalizes the earlier lemma reported in/[Bartle et all|2009c].

A logic for swapping statements

The primary tool for performing eager/lazy sampling is an exension of the rela-
tional Hoare logic with rules for swapping statements. As the goal is to move code
across procedures, it is essential that the logic considersvo potentially di erent
environments E and E° The logic deals with judgments of the form

CE;(6S) E%S;H: )

In most cases, the logic will be applied with S being a sequence of (guarded)
sampling statements; however, we do not constrairS and merely require that it
satis es three basic properties for some sets of variableX and | :

modies(E;S;X)  modies(E%S;X) “E;S' X E%S

Some rules of the logic are given in Figuré312; for the sake @&adability all rules
are specialized to , although we formalized more general versions of the rule®.g.
for conditional statements,

T E;(c;;S) E%(S;):PMenli) Q P =) ehli = Y
T E;(c2;S) ES(S;9):PArenli) Q fv(e)\ X =
' E; (if ethency elsec;;S) E%(S;if e°thencf elsecd): P ) Q

[S-Cond]

8 Making adversaries deterministic is the goal of the coin xing technique, as described
by Bellare and Rogaway [2006].
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x6A[ X MEO\X=: x6A[ X MA\X=; o
“Ex es) ENGx ol TE s ds) ESsx s gl
Y E;(c;S) E%(S;q) CE;(c;S) E%(S;Q) ss

CE;(c1;¢2;S)  E%(S;c)0d) 15-Seq]
~ . . 0. .0 ~ . . 0. . 0 - .
E;(c1;S) E%(S;c) E;(c2;S) E%(S;c) fv(e)\ X =; [S-Cond]

* E; (if ethenc; elsecy;S) E%(S;if ethen c elsec))

E%(S;D) fv(e)\ X = ;
E% (S; while e do ¢

" E;(cS)

* E; (whileedoc;S) [S-While]

E%(S;f:body) E(f):args= EY(f):args E(f):re= E%f):re

* E; (f: body; S)
fv(E(f)re)\ X =; x62 [ X fv(e)\ X =
TE(x 169 ELEK 1(9) 1S-cal
"W A X\ (RW[R )=: I\RW =: 8f 620E(f)= EYf)
8f 20: E(f):args= E%f):args™ E(f):re= EYf ):re »
Y E; (f:body;S) E%(S;f: body)
[S-Adv]

TE;(x A (e);S) E%(Six A (e)

Fig. 3.2. Selected rules of a logic for swapping statements.

An application

Consider the gamesGazy and Geager in Figure B.3. Both games de ne an oracle

(Game Giazy :
L nilb b A ()

Oracle Ojazy (X) :
if x 2 dom(L) then

) (Game Geager : i
L nil; ¢ s f0lg; b A ()

Oracle Oeager (X) :
if x 2 dom(L) then

y ¢ f0;1g; if x=0%theny ¢ elsey s f0;1g ;
L (x;y) L L (x;y) L
elsey  LI[x] elsey LI[x]
 returny ) _ return y )

Fig. 3.3. An example of eager sampling justi ed by inter-procedural ¢ ode motion.

O :f0;1g¢ ' f 0;1g . While in game Gazy the oracle is implemented as a typical
random oracle that chooses its answers on demand, iBeager We use a fresh variable
¥ to x in advance the response to a query of the form0¥. We can prove that
both games are perfectly indistinguishable from the point ¢ view of an adversary

A (who cannot write L). De ne

S ¥ if 0 6zdom(L) theny = f0;1g elsey  L[0]

c®¥ b A
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and takel = fLg, X = f$g. We introduce an intermediate game using rule [Trans],

© Gagy ' lybg Elazy s (L nilic;S) * Eagzy; (L nil;c; S) ' ?/bg Geager

’ Glazy' ?lbg Geager

[Trans]

We prove the premise on the left by eliminating S as dead code, since it does not
modify variable b. To prove the other premise, we introduce an intermediate gane
(Eeager; (L nil; S; ©)). Its equivalence to Geager is direct by propagating the initial
assignment toL to the condition in S and then simplifying the conditional to its
rst branch. Its equivalence to (Ejazy; (L nil; c; S)) is justi ed by appealing to
rule [S-Adv],

[Re] ) Elazy; (Olazy; S)  Eeager; (S; Oeager)
L nil L nil " Elazy; (6;S)  Eeager (S;©)
" Elazy s (L nil;c; S) ' ]ybg Eeager; (L nil; S; c)

[S-Adv]

[Sed]

We are thus left to show
" Elazy; (Olazy:body; S)  Eeager (S; Oeagerb0ody)

The proof of this latter judgment starts by an application of the generalized rule
for conditionals of the logic for swapping statements. Let

e = e’= x 2 dom(L)

co=y s fOlg; L (xy):L

= (if x=0%theny ¢elsey s f0;1g); L (x;y):L
==y L[x

There are two non-trivial proof obligations:

1.7 ¢S S;Q:=y ™ (x2domlL))hli) =y
This corresponds to showing that the code in theelse branch in the conditional
of each implementation ofO commutes with S, and follows from [S-Assn];
2.7 ¢c;S S;d:=y " (x2domL))hLi) =y
By case analysis orx = 0%:
a) If x = 0K, we can invoke certi ed program transformations using the p re-
condition that x 2 dom(L) to simplify the goal to the following easily
provable form:

Ty s o1l (xy)nL;p oy ¢osf0lgry %L (xy)uL

b) Otherwise, we do a further case analysis o®* 2 dom(L)
i. If 02 dom(L), we have to prove that™ ¢;;9 L[0K] ¢ L[0;ct
which is trivial;
ii. Otherwise, the goal simplies to * ¢;;¢ ¢ f0;1g ¢ s f0;1g ;¢
which is also trivial. u
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3.3 Reasoning about Failure Events

One common technique to justify a lossy transformation G;A ! G%A, where
Pr[G:A] 6 Pr[G?: A] is based on what cryptographers callfailure events This

technique relies on afundamental lemma that allows to bound the di erence in

the probability of an event in two games: one identi es a failure event and argues
that both games behave identically until failure occurs. Ore can then bound the
di erence in probability of another event by the probabilit y of failure in either game.
Consider for example the following two program snippets andheir instrumented

versions:

def

s 2 if ethency; c elsec Spad ¥ if ethency; bad true; ¢ elsec,

s £ if ethency; cCelsec, sh.g £ if ethency; bad  true; @ elsec,

If we ignore variable bad, s and spaq , and s® and sgad , respectively, are observa-
tionally equivalent. Moreover, Spaq and sgad behave identically unlessbad is set.

Thus, the di erence of the probability of an event A in a game G containing the

program fragment s and a gameGP° containing instead s® can be bounded by the
probability of bad being set in either G or G°.

Lemma 3.3 (Fundamental Lemma). Let G;; G, be two games and leA; B,
and F be events. IfPr[G; : A" F]=Pr[G,:B": F], then

jPr{Gi: Al Pr[G2:B]j max(Pr[Gi:F];Pr[G,:F])
Proof.

jPr{Gs : Al Pr[G;:B]j
= jPr[Gy:AMF]+Pr{Gy:A": F] Pr[G;:B"F] Pr[G;:B": FJ]j
= jPr[Gy:A™F] Pr[G;:B"FJj
max(Pr[G; :A™ F];Pr[G2:B " F])
max(Pr[Gy : F];Pr[G2: F])

u

To apply this lemma, we developed a syntactic criterion to dscharge its hypothesis
for the case whereA = B and F = bad. The hypothesis can be automatically
established by inspecting the code of both games: it holds itheir code diers

only after program points setting the ag bad to true and bad is never reset to
false afterwards. Note also that if both games terminate with probability 1, then

Pr[G; : bad] = Pr[ G, : bad], and that if, for instance, only game G, terminates
with probability 1, it must be the case that Pr[G; : bad] Pr[G;: bad].

3.3.1 A Logic for Bounding the Probability of Events

Many steps in game-based proofs require to provide an upperdund for the measure
of some function g after the execution of a commandc (throughout this section,
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we assume a xed environmentE that we omit from the presentation). This is
typically the case when applying the Fundamental Lemma preented in the previous
section: we need to bound the probability of the failure eveh bad (equivalently,
the expected value of its characteristic function1p,q ). A function f is an upper
bound of ( m: JcKm g) when

JKg f € 8m:JKmg fm

Figure [3:4 gathers some rules for proving the validity of sub triples. The rule
for adversary calls assumes thatf depends only on variables that the adversary
cannot modify directly (but may modify indirectly through o racle calls, of course).
The correctness of this rule is proved using the induction pinciple for well-formed
adversaries together with the rest of the rules of the logic.

f = m: g (mfJeKm=xg) f = m: JdKm (v: g (mfv=xg))

© JskipkE  f

X oekg f T s dg f
Tk f ok g Tlakg o ok f T Jck f
S Jockh f © Jif ethenc, elsecokg  f  Jwhileedocd  f
g g® Jkg® O fO f S Jpbodyg f f =x f g=vg x6AX[Y)
TJdkg f X pe)kg f

wi A 8p20: " Jpbody f f =x f X \ (fxg[RW )=
XX A () f

f=f “c' b g=og ~IX¥ f
Tlkkg f

Fig. 3.4. Selected rules of a logic for bounding the probability of events.

The rules bear some similarity with the rules of (standard) Hoare logic. How-
ever, there are some subtle di erences. For example, the preises of the rules for
branching statements do not consider guards. The rule

) JClKJ fje ) JCZKJ fj: e
© Jif ethenc; elsec kg f

wheref;. is de ned as( m: if Jekm then f (m) else 0)can be derived from the rule
for conditionals in the gure by two simple applications of t he rule of consequence .
Moreover, the rule for conditional statements (and its variant above) is incomplete:
consider a statement of the formJif true thenc; elsec,kg f such that Jo; kg f
is valid, but not Jco kg f; the triple Jif true then c; elsec kg f is valid, but to
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derive it one needs to resort to observational equivalenceMore general rules exist,
but we have not formalized them since we did not need them in ouproofsﬂ

Digression

The di erences between the above triples and those of Hoareobic are inherent to
their de nition, which is tailored to establish upper bound s for the probability of
events. Nevertheless, the validity of a Hoare triplef Pg ¢ f Qg (in which pre- and
post-conditions are Boolean-valued predicates) is equivant to the validity of the

triple JcKL. g 1. p. We can consider dual triples of the formJckg f whose
validity is de ned as:

JKg f £ 8m:JKmg fm

This allows to express termination of a program asJckL 1 and admits an em-
bedding of Hoare triples, mappingfPg c fQg to JcKlg  1p. However, this em-
bedding does not preserve validity for non-terminating pragrams under the partial
correctness interpretation. Consider a programc that never terminates: we have
ftrueg c f falsay, but clearly not JcKligse 1.

3.3.2 Automation

In most applications of Lemmal[3.3, failure can only be triggeed by oracle calls.
Typically, the ag bad that signals failure is set in the code of an oracle for which
an upper bound for the number of queries made by the adversarys known. The
following lemma provides a general method for bounding the pbability of failure
under such circumstances.

Lemma 3.4 (Failure Event Lemma). Consider an eventF and a gameG that
gives adversaries access to an oracl®. Let cntr : Eya, h: N1 [0; 1] be such that
cntr and F do not depend on variables that can be written outsid®, and for any
initial memory m,

:F(m) =) Pr[O:bodyym:F] h(JntrKm)

and
range (JO:bodyKm) ( m & JentrKm < Jentrkm9 _

range (JO:bodyKm) (m & JentrkKm = JentrKm®~ F m®= F m)
Then, for any initial memory m satisfying : F(m) and JentrKm =0,
e 1
PriG;m:F ~cntr (] h(i)
i=0

4 More generally, it seems possible to make the logic complete at the cost of considering
more complex statements with pre-conditions on memories.
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Proof. Dene f : M! [0;1] as follows
g 0 if JentrkKm > q
% 1
> 1g(m)+ 1. g (M) h(i) if JentrkKm g
i= Jentrkm

f(m) &

We showJGK  f by structural induction on the code of G using the rules of the
logic presented in the previous section. We rst prove that O satis es the triple
JO:bodyd  f. We must show that for every m, JO:bodyKm f f (m). This is
trivial when cntr is not incremented, because we have

JO:bodyKm f = f (m) (JO:bodyKm 1) f(m)

When cntr is incremented andJentrKm g, this is trivial too, because the left
hand side becomes 0. We are left with the case whei@:body increments cntr and
JentrKm < q. If F(m), the right hand side is equal to 1 and the inequality holds.
Otherwise, we have from the hypotheses that

0 1
X 1
JO:bodyKm f  JO:bodyKm @m %1 (m% + 1. r (M9 h(i)A
i=Jentrkm©
X 1
Pr[O:body,m : F]+Pr[O:body,m :: F] h(i)
i=Jentrkm +1
X 1
h(JentrkKm) + h(i)
i=Jentrkm +1
% 1
= h(i) = f(m)
i=Jentrkm

Using the rules in Figure[3.4, we can then extend this result ® adversary calls and
to the rest of the game, showing thatJGK  f.

Finally, let m be a memory such that: F(m) and JentrKm = 0. It follows
immediately from JGK f that

% 1
PriG;m:F ~cntr (] JGKm f f(m) = h(i) u
i=0
When failure is de ned as the probability of a ag bad being set by an oracle

and the number of queries the adversary makes to this oraclesiupper bounded
by g, the above lemma can be used to bound the probability of failee by taking
F = bad and de ning h suitably. In most practical applications the probability
of an oracle call raising failure is history-independent ad henceh is a constant
function. The proof of Lemmal[4.3 given in Sectiol 43P is anxxeption for which
the full generality of the lemma is needed.



The PRP/PRF Switching Lemma

ryptographic systems are generally built incrementally by combining bag
primitives with the goal of achieving a higher level securiyy goal. Rather than

designing a system for a particular choice of a primitive, oe designs the system
assuming a generic and simpli ed model of the primitive. Thesecurity of the whole
system is then analyzed under the assumption that this modebehaves in an ideal
way. Since in practice the construction that implements the primitive will de nitely
deviate from this ideal behavior, the actual security of the system depends on how
wide the gap between the idealized and the actual behavior iPseudorandom func-
tions (PRF) and pseudorandom permutations (PRP) are two idealized primitives
that are used to model blockciphers and thus play a central rée in the design of
symmetric-key systems. Although the most natural assumpton to make about a
blockcipher is that it behaves as a pseudorandom permutatio, most commonly the
security of a system based on a blockcipher is analyzed by ré&axing the blockci-
pher with a perfectly random function. The PRP/PRF switchin g lemma is used
to Il the gap: given a bound for the security of a blockcipher as a pseudorandom
permutation, it gives a bound for its security as a pseudoradom function.

In this Chapter we will formally de ne the notions of pseudorandom function
and pseudorandom permutation and their security, and we wil overview two di er-
ent game-based proofs of the PRP/PRF switching lemma. Both se the Fundamen-
tal Lemma of game-playing (Lemmal3.B) to bound the advantageof an adversary
by the probability of a failure event, but each proof bounds the probability of fail-
ure using a di erent technique. We rst present a proof that u ses the principle of
eager sampling so that all random choices are done up front @hthe probability is
directly computable. We then present a signi cantly more compact proof that uses
Lemmal3.2 (see[Y3.3.2) to bound the probability of failure.

57
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4.1 Pseudorandom Functions

A pseudorandom function is a key-indexed family of functiors ffy j k 2 K g with
the property that an instance selected at random according b some distribution on
K is computationally indistinguishable from a perfectly random function. Unless
otherwise said we will consider that the distribution on K that makes this property
hold is the uniform distribution.

Consider an adversary who has only blackbox access to an olacand is put
in either of two scenarios: one where the oracle is a random @tance of a function
drawn from a family of pseudorandom functions, and other whee the oracle is a
perfectly random function. This adversary should only be alle to tell apart both
scenarios with a small probability. We can de ne this formally using games.

De nition 4.1 (PRF-advantage). Letffy : Al B jk 2 Kgbe apseudorandom
function family, and A an adversary with blackbox access to an oracl® as in the
following two games:

(Game Gpge : ) (Game Gge: )
ks K;b A () L nibb A ()
Oracle O(x): Oracle O(x):
return f (x) if x 62dom(L) then

y ® B;
L (x;y) L
return L [x]
| J |

The PRF-advantage ofA againstf is de ned as
AdV pre, £ jPr[Gere:b=1] Pr[Gge:b=1]j

The concept of pseudorandom function was_rst introduced by Goldreich, Gold-
wasser, and Micali [1986]. Rather than considering a singléamily of key-indexed
functions, they consider a collection of families parametized by a security parame-
ter . Inthis asymptotic setting, a pseudorandom function is seare if all adversaries
that execute in polynomial-time on have a negligible PRF-advantage (as a func-
tion of ). In contrast, in the setting of exact security there is no absolute notion of
security for pseudorandom functions. The above de nition anly associates to each
adversary A a real number, its PRF-advantage. In practice one considersll adver-
saries consuming no more than a certain amount of computatioal resources, and
gives an upper bound for their PRF-advantage.

4.2 Pseudorandom Permutations

A pseudorandom permutation is key-indexed family of permugtions ffy j k2 Kg
on A such that a permutation randomly drawn from the family is computationally
indistinguishable from a permutation drawn uniformly from the set of all permuta-
tions on A. Again, we de ne this notion formally using games.
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De nition 4.2 (PRP-advantage). Letffy : Al Ajk2 Kgbe apseudorandom
permutation family, and A an adversary with blackbox access to an oracle as in
the following two games:

(Game Gegp : ) (Game Grp : )
ks K;b A () L nibb A ()
Oracle O(x): Oracle O(x):
return f (Xx) if x 62dom(L) then

y 8 Anran(L);
L (x;y) L
return L [x]
| J |

where the instructiony * Anran(L) samples uniformly an element ofA that is not
in the range of the association listL , thus ensuring that oracleO in Ggp implements
an injective and therefore bijective function. The PRP-a dvantage of A against
f is de ned as

AdV prp, £ jPr[Gere:b=1] Pr[Gge: b= 1]j

The notion of pseudorandom permutation is due to Luby and Ra&o [[1988], who
also observe that the notions of pseudorandom function and @rmutation are no
dierent in an asymptotic setting, and show how to construct a pseudorandom
permutation from a pseudorandom function.

4.3 The PRP/PRF Switching Lemma

We already observed that every pseudorandom permutation fanily is also a pseudo-
random function family. But how well does a pseudorandom pemutation perform

as a pseudorandom function? Let us rst consider the simplemproblem of compar-
ing a perfectly random function to a random permutation. Suppose you give to
an adversary blackbox access to an oracle implementing eiér a random function

or a random permutation, and you ask it to tell you which is the case. For the
sake of concreteness let us assume the domain of the permuit (and the domain

and range of the function) isf0;1g . Due to the birthday problem, no matter the

strategy the adversary follows, after roughly 2=2 queries to the oracle it will be
able to tell in which scenario it is with a high probability. | f the oracle is a random
function, a collision is almost sure to occur, whereas it cold not occur when the
oracle is a random permutation. The birthday problem gives s a lower bound for
the advantage of an adversary in distinguishing a random fugtion from a random

permutation. The following lemma gives an upper bound.

Lemma 4.3 (PRP/PRF switching lemma). Let A be an adversary with black-
box access to an oracl@® implementing either a random permutation onf0;1g as
in game Ggp or a random function from f0;1g to f0;1g as in gameGgg. Suppose,
in addition, that A makes at mostq > 0 queries to oracleO. Then,
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aqq 1)

jPriGrp:b=1] Pr[Ggrr:b=1]j >

4.1)

We overview two di erent machine-checked proofs of the PRPPRF switching
lemma that exploit the code-based techniques presented inaglier sections. Both
proofs use the Fundamental Lemma to bound the advantage of tb adversary by
the probability of a failure event. The rst proof uses the eager sampling technique
of Section[3.Z.B to bound the probability of failure, wherea the second one relies
on Lemmal[3.3 of Sectiori:3.3]2. We begin by introducing in Figte [41 annotated
versions G and G of the gamesGgrp and Ggrr. These annotated games set a
ag bad whenever the oracle corresponding to a random function woual return a
value colliding with a response to a previous query, but are therwise semantically
equivalent to the original games. The annotated games are syactically identical
until the point where bad is set, so we can appeal to Lemm&=3.3 to bound the
di erence in the probability of b being equal to 1 in the original games:

jPriGep :b=1] Pr[Gge:b=1]j Pr G :bad

(Game G : ) (Game G2 : )\ (Game G2%': h
L nil;b A () L nil;b A () L nil;S; b A ()
Oracle O(x): Oracle O(x): Oracle O(x):
if x 62dom(L) then if x 62dom(L) then if x 62dom(L ) then

if y 2 ran(L) then if y 2 ran(L) then y  hd(Y);
bad true; bad true Y t(Y)
y s f0;1g nran(L) L (xy):L elsey s f0;1g
L (xy):lL return L [x] L (xy):L
_return L [x] )L ) return L[x] )

S ® Y nil; whilejYj<qdo y s fO;1g; Y y:Y

Fig. 4.1. Games used in the proofs of the PRP/PRF Switching Lemma.

4.3.1 A Proof Based on Eager Sampling

We make a rst remark: the probability of bad being set in gameG2¥ is bounded
by the probability of having a collision in ran(L) at the end of the game. Let us
write this latter event as col(L),

collL) ¥ 9xq;x22 dom(L): x; 6 X2 A L[x1] = L[X2]

We prove that
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S G Ggre:true) badhli =) col(L)H2i

Thus,
Pr G2 :bad  Pr[Gge: colL)] (4.2)

Using the logic for swapping statements, we then modify the oacle in Grg so that
the responses to the rstq queries are instead chosen at the beginning of the game
and stored in a list Y, thus obtaining the equivalent eager versionGy2* shown in
Figure[4]; each time a query is made, the oracle pops a valueoim list Y and gives

it back to the adversary as the response. Since the initialiation code S terminates
and does not modifyL , we can conclude that

Pr{Grr : col(L)] = Pr[ Gre; S : col(L)] = Pr[ G2 : col(L)]

We prove using the relational Hoare logic that having a collsion in the range ofL
at the end of this last game is bounded by the probability of having a collision in
Y immediately after executing S. We conclude that the bound in (1) holds by
analyzing the loop in S.

Observe that if there are no collisions inY in a memory m, we can prove by
induction on (q j Y]) that the probability of sampling a colliding value in the
remaining loop iterations is

X1
PriS;m:9i;j 2 N:ii<j<g ™ Y[il=Y[]= >
=iy

We thus have,

PriGea® :col(L)] Pr[S;mfnil=Y g:9i;j 2 N:i<j<g "~ Y[il= Y[l
a(q
2‘+l

4.3.2 A Proof Based on the Failure Event Lemma

The bound in (.1) follows from a direct application of Lemmal3.4. It su ces to
take F = bad, h(i)= 12 ,andcntr= jLj. If bad is initially set to falsein memory
m, we have

1
Pr G229 m:bad =Pr[b A ();mfnil=Lg: bad AjL] X hiy= %D
Fam: = ; =Lg:bad *jLj d h(= 5=
i=0

The rst equation holds becauseA does not make more thang queries toO. The
inequality is obtained from Lemmal[3.4; we use the logic of Sd¢ion B.3.1 to bound
the probability of bad being set in one call to the oracle byh(cntr).
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4.3.3 Comparison of Both Proofs

The proof of the PRP/PRF switching lemma that bounds the prob ability of failure
using Lemmal3:4 presented in Section4.3.2 is considerablharter compared to the
one presented in Section 4.3]1, that uses the principle of gar sampling to reduce
the problem of bounding the probability of failure to local reasoning about a loop.
The former proof takes just about 100 lines ofCog compared to the 400 lines that
takes the latter. Both proofs are signi cantly more compact than the 900-lines proof
reported in [Barthe et al. [2009¢]. That proof used an earliermechanization of the
eager sampling technique that only allowed to x the value of one response of the
oracle at a time. Thus, in order to x in advance the response b all the q queries
that could be made by the adversary, an induction argument wa necessary.

4.4 Pseudorandom Permutations as Pseudorandom
Functions

In view of Lemmal[4.3, we can now answer our original questionhow well does a
pseudorandom permutation perform as a pseudorandom funatin?

Let ffy j k 2 K g be a pseudorandom permutation family onf0; 1g and let A
be an adversary that makes at mostg > 0 queries to its oracle. The PRF-advantage
of A is

AQV pre, = jPr[Gerr:b=1] Pr[Gge:b=1]j
= jPr[Gerp :b=1] Pr[Grp:b=1]+Pr[ Grp:b=1] Pr[Grr:b=1]j
j Pr[Gprp:b=1] Pr[Ggrp:b=1]j+ jPr[Ggp:b=1] Pr[Gge:b=1]j

qq 1)

A

Consider this bound in an asymptotic setting, and assume is linearly propor-
tional to the security parameter . Every polynomial-time adversary can make only
a polynomial number of queries to its oracle, soq is polynomial on the security
parameter, and the term on the right hand side of the last ineqality is negligi-
ble on if f is secure as a pseudorandom permutation. Hencd, is secure as a
pseudorandom function wheneverf is secure as a pseudorandom permutation.

We already observed that the construction of Luby and Racko! [1988] provides
a means to build a pseudorandom permutation from a pseudoragom function;
many other authors have studied variations of this construdion. In contrast, the
reverse direction has been historically much less studiedAlthough it follows from
the PRP/PRF switching lemma that in a complexity-theoretic al setting, a pseu-
dorandom permutation is a pseudorandom function, there are constructions that
achieve better security at a low e ciency cost [Hall et al.|1998].
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4.5 Discussion

Despite the apparent simplicity of the PRP/PRF switching le mma, some purported
proofs in the literature contain a subtle error in reasoningabout conditional prob-
abilities (cf. Impagliazzo and Rudich [1989]). Let us brie y report the argument in
those proofs.

Intuitive proof.

Let collisionbe the event that adversary A gets the same answer to two di erent
gueries when interacting with a random function. Since a ramlom permutation
behaves the same as a random function when no collisions aréserved, we have
that

Pr{Grp :b=1]=Pr[ Grr: b=1 j: collisioq (4.3)

Let x =Pr[Grr:b=1j: collisiod, y =Pr[ Grr : b=1 j collisiofj. Then,

jPr(Grp:b=1] Pr[Grr:b=1]]

X (X Pr[Ggg:: collisiof + y Pr[Ggf : collision)j
X (1  Pr[Ggg:: collisior]) vy Pr[Ggr : collisior)j
iX yj Pr[Gge : collision

Since0 x;y 1,
jPriGrp :b=1] Pr[Grr:b=1]j Pr[Ggr: collisioq
Since the adversary makes at most] queries to the oracle,
9ga 1)
2‘+1

and the bound (4.1) follows. u

The reader may be wondering where is the error in the above argnent. The
problem is that equation (Z.3) might not hold, no matter how appealing the intuitive
justi cation we gave can look. We can actually illustrate th is with a counterexample
for * =1, by showing a particular adversary for which the equation daes not hold:

Pr[Gre : collisior

Adversary Ai():
y O (0);
if y=0 then returnl
else
y O (1)
if y =1 then returnl else return0

Let us analyze how this adversary fares in each game with reggt to equation (4.3).
We can better depict the behavior of the adversary using a tre. The values in leaves
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represent the bit b the adversary returns in each case whereas the label on thefte
of a node indicates the probability of reaching it.

. N N
GRF GRP
1 1
2 2
N\ J J
It follows that
1 . . 2
E=Pr[GRp:b=1] 6 Pr{Ggr:b=1j: collisiod= 3 (4.4)

The reason of the discrepancy is that the number of queries nde by the adversary
varies depending on the answer it receives from its rst quey.

The same would happen if the number of queries depended on thimternal
random choices ofA. For instance, the following adversary makes either zero or
two queries depending on the result of sampling a fair coin ath achieves the same
probabilities in equation (f4) as the adversary we showed eviously:

Adversary Aj():
a s f0;1g;
if a=0 then returnl
else
Yo O (0); y1 O (1),
if yo” y1 then returnl else returnO

N\ N\
Grp
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Obviously, the result we proved in the previous section hold for both of the
above adversaries. We can compute the actual advantage thegchieve and check
that the bound in Equation (4.1} holds:

h i h i
1 3 1 g9 1) _ 1
1 . —_— Al. —_— —_ —_ —
Pr Gap:b=1 Pr Gat:b=1 = 5 237 o5
h i h i
1 5 1 g9 1) 1
= Ao o |y — — — —
Pr GRa:b=1 Pr GRz:b=1 = 5 378 2a "5

Indeed, both adversaries make at mosig = 2 queries and the bound holds. The
following adversary A3 mounting a birthday attack with g = 2 achieves the maximal
value of 1=2:

Adversary As():

yi1 O (0);

y2 O (1),
if y1 6 y, then returnl else return0

h i h i
Pr GRg:b=1 Pr GRg:b=1 =1

NI =
|
NI =

4.6 Related Work

The standard proof of the PRP/PRF switching lemma is due to Impagliazzo and
Rudich [1989,Theorem 5.1]. The above observation about therror in the reasoning
in the standard proof of the lemma and the rst counterexample we showed are due
to Bellare and Rogaway [2006].

Bellare and Rogaway|[2006,Lemma 1] give a game-based prodftbe PRP/PRF
switching lemma. Their proof is similar to ours, but they make the additional
assumption that the adversary never asks an oracle query twe. Just as in the
proof we presented, they use the Fundamental Lemma of gamelgying to bound
the di erence in the probability of the adversary outputtin g 1 when interacting with
either a random permutation or a random function. However, the justi cation of
the bound on the probability of the bad ag being set when the adversary interacts
with a random function remains informal. The same authors gve also a proof of the
PRP/PRF switching lemma that does not use games, under the asumption that
the adversary is deterministic and makes exactlyq di erent queries to its oracle.
We note that the assumption of the adversary being determinstic is without loss of
generality only if it is computationally unbounded, and therefore the argument does
not hold in an asymptotic setting where the adversary must execute in polynomial-
time.

Shoup [2004,Section 5.1] gives a game-based proof of the PRIRF switching
lemma under the assumption that the adversary makes exacthyg distinct queries to
its oracle. In the games he considers, the challenger acts @&stermediary between
the oracle and the adversary. Rather than the adversary calhg the oracle at its
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discretion, it is the challenger that calls the adversary toget the next query; it then
asks the query itself to the oracle and gives the response blathe adversary in the
next call. There is probably nothing wrong with this formula tion, but we feel that
it imposes unnecessary restrictions on the form of the adveary that do not help
to make the proof more clear.

A eldt, Tanaka, and Marti [2007] present a formalization of a game-based proof
of the PRP/PRF switching lemma in the Coq proof assistant. What they prove in
reality is a simpli ed variant that only holds for non-adapt ive and deterministic
adversaries. They formalize adversaries as purely determistic mathematical func-
tions that take a natural number and return an element in the domain of its oracle
(a query). This implies that the queries the adversary makesdo not depend on
the responses to previous queries or on any random choicesorFnstance, the two
adversaries we gave in the previous section as counterexaeg to the probabilistic
reasoning in the original proof of the PRP/PRF switching lemma are ruled out by
this formulation.



Unforgeability of Full-Domain Hash
Signatures

I n this chapter we will go through the formalization in CertiCrypt of two di erent

proofs of security of the Full-Domain Hash (FDH) signature scheme. The FDH
scheme was rst proposed by Bellare and Rogaway [1996] as arceent RSA-based
signature scheme, but is in fact an instance of an earlier catruction described by
the same authors in.1993. Here, we will consider this lattermore general construc-
tion, which is based on a family of one-way trapdoor permutatons f on a cyclic
group G, and a hash functionH : f0;1g ! G whose range is the full domain off .
The RSA-based scheme is obtained by instantiating with the RSA function, and
the hash function with some cryptographic hash function, sch as SHA-1 with the
length of its output extended to match that of the RSA modulus.

De nition 5.1 (Trapdoor permutation). A family of trapdoor permutations

is a triple of algorithms (KG;f;f 1). For a given value of the security parame-
ter , the key generatorKG( ) randomly selects a pair of keyqpk;sk) such that
f (pk; ) is a permutation on its domain andf (sk; ) is its inverse. We say that a
family of trapdoor permutations is one-way if it cannot be inverted in probabilistic

polyonomial-time on a uniformly distributed element in its damain.

De nition 5.2 (Full-Domain Hash signature scheme). Let (KGs;f;f 1) be
a family of trapdoor permutations on cyclic groupsG and let H be family of hash
functions from bitstrings of arbitrary length onto the domain o the permutations.
The Full-Domain Hash digital signature scheme is composedfdhe following triple
of algorithms:

KG( ) £ (pk;sk) KG ¢ ( ); return (pk;sk)

Sign(sk; m) £ returnf 1(sk;H(m))

Verify(pk; m; ) return (f (pk; )= H(m))
The key generation algorithm just runs the key generation algdéhm of the under-
lying trapdoor permutation obtaining a public keypk, that is used as the veri cation

Q.
g

67
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key of the scheme, and a secret key (trapdoogk used to compute signatures. The
signature of a messagen 2 f 0;1g is simply f *(sk;H (m)), the preimage underf
of its digest. To verify a purported signature on a messagenm, it su ces to check
whether H (m) and f (pk; ) coincide.

The FDH scheme can be proved secure in the random oracle modebainst
existential forgery under adaptive chosen-message attask(see De nition 210 in
YZB). This means that if we regard the hash functiorH as a truly random function,
then any computationally feasible adversary with access taghe public key and that
can ask for the signature of messages of its choice, succeéddorging a signature
for a fresh message only with a negligible probability. Thisasymptotic security
statement is desirable, but of limited practical utility be cause it does not give
any hint as to how to choose the scheme parameters to attain aestain degree of
security. A much more useful result would be an exact securit statement, a bound
that quanti es the gap between the security of the scheme andhe intractability of
inverting the trapdoor permutation.

Consider an adversary against the existential unforgeabity of FDH that makes
at most o4( ) and gs( ) queries to the hash and signing oracles, respectively. In a
code-based setting, such an adversary is regarded as a blalbkx procedure A run
in the context of the following attack game:

(Game Gek : Oracle H(m): )
(pk;sk) KG (); if m 62dom(L ) then
L;S il hs G L (mh):L
(m; ) A (pk); return L [m]
h H(m) Oracle Signm):
S m:S;h H(m)
return f 1(sk;h)
g J

This adversary succeeds in forging a FDH signature for a frésmessage with prob-
ability
PriGer:h=f(pk; )" m2S]

Note that in the above game the signing oracle makes a hash goeeach time the
adversary asks for the signature of a message, and an additial hash query is made
at the end as part of the veri cation of the signature returned by the adversary.
Thus the number of e ective hash queries made during the what game is at most
04 + gs+ 1. All this is captured by the following post-condition of Gg,

L] m+tos+l NjS| s

This implies in particular that Pr{Ggr: A] =Pr[Ggr: A" ] for any event A.

In the remainder of this chapter we will show two di erent way s of constructing
an inverter | that uses the forger A to invert f. These constructions e ectively
reduce the security of the signature scheme to the intractablity of inverting the
underlying trapdoor permutation.
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5.1 The Original Proof

We rst present a game-based proof of the original result byl Bellare and Rogaway
[1993], which provides a security bound that depends on theumber of queries the
adversary makes to both, the hash and the signing oracle.

Theorem 5.3 (Original bound). Let A be an adversary mounting a chosen-
message existential forgery attack against FDH that makes ahost g4 queries to
the hash oracleH and at most gs queries to the signing oracleSign SupposeA
succeeds in forging a signature for a fresh message withinntie t with probability
Then, there exists an inverter| that nds the preimage of an element uniformly
drawn from the range off with probability °© within time t° where

O (m+as+1) ! (5.1)
% t+(gu+ gs) O(tr) (5.2)

and t; is an upper bound for the time needed to compute the image of aogp
element under the permutationf .

Proof. The inverter | shown in the context of gameGoy in Figure achieves the
probability and time bounds in the statement. It simulates an environment for A
where it replaces the hash and signing oracles with versionsf its own.

(Game Gow : Oracle H(m): h
(pk;sk) KG ¢ (); if m 2 dom(L) then
y s G; if jLj=j thenh ¢
x I (pkyy) elser s G; h  f(pk;r)
) - P (m;r): P;
A/(}j(versalg I (pk;y): L (mihy - L:
5 y,p ' return L [m]
j s f0;:::5q0; Oracle Sign(m) :
P;L nil; h H(m);
(m; ) A (pk); return P [m]
\_return J

Fig. 5.1. The inverter | in the context of the one-wayness game for the family of trapd oor
permutations (KG;;f;f ).

In order to stand a chance of forging a signature for a fresh nssagem, the
adversary A must ask for the hash value ofm by querying oracle H. Otherwise,
the hash of m would be completely random an independent of the adversarg
output, and thus the purported signature  would only be valid with a negligible
probability. The inverter | tries to guess the query where the hash value aofn is

asked for the rst time. Let q £ gs+ oy. The inverter rst randomly chooses an

inverter answers to thej -th hash query (we index the queries from 0) with its own
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challengey, and to the remaining hash queries with a random element in tle range
of f with a known preimage,; it stores this preimage in a listP . When the adversary
makes a signing query, the inverter rst makes the correspoding hash query itself
and then obtains the preimage of the hash value undef from the list P. The
simulation is perfect provided the forger never asks the sigature of the message
corresponding to thej -th hash query, because in this case its preimage will not be
in the list P . A su cient condition for the simulation to be correct is tha t the guess
j be correct (i.,e.m = M [j ]), becausem cannot appear in a signing query (it must
be fresh).

We can readily analyze the extra time the inverter spends in Bnulating the
environment for A in Gow. The only signi cant overhead is in the simulation of
the hash oracleH . For all but one hash query, the simulated oracle computes tk
image underf of some element. The time bound[{5.R) follows because the adisary
makes (either directly or indirectly, through the signing oracle) at most g4+ gs hash
queries.

To prove that the probability bound in equation (5.1} holds, we will exhibit a
sequence of games relating the probability

O=Pr Gow:x=f I(sk;y)
of | successfully invertingf on a random challengey, to the probability
=Pr{Gegr:h=1f(pk; )*m2S]

of adversary A forging a signature for a fresh message. For each game, the ina
experiment is shown alongside the code of procedures in then@ronment; code
pieces that change with respect to the previous game in the sgience appear on a
gray background.

We start from the game Ggr that encodes the existential forgery attack. In
this initial game, the hash oracleH is implemented as a random oracle whereas
the signing oracle is implemented as speci ed by the schemén order to be able
to encode the freshness condition on the message whose sigma is forged, the
signing oracle is instrumented to record the queries it gets

(Game Ger : Oracle H(m): )
(pk;sk) KG (); if m 62dom(L ) then
L;S nil; hs G, L (mh):L
(m; ) A (pk); return L [m]
h H(m) Oracle Signm) :
S m:S;h H(m)
return f  1(sk;h)
(. J

In game G; we instrument the hash oracle to keep track of the indices of geries.
We use for this purpose a listM where we store the messages queried to the
hash oracle so far. Note that this is not really necessary bewse the value ofM



5.1. The Original Proof 71

can be recovered at any given moment from the value of.. We only make this
instrumentation for convenience and to make the proof cleaar. We also introduce
the guesg that will be used later by the inverter. We samplej uniformly at the end
of the game so that its independence from the output of the adersary is evident.

(Game G Oracle H(m):
(pk;sk) KG (); if m 62dom(L ) then
M nil; hs G,L (m;h):L;
L;S nil M m: M
(m; ) A (pk); return L [m]
h  H(m); Oracle Sigr(m) :
jo®f0:tag S m:zS;h H(m)
return f 1(sk;h)
g J

Consider the predicate
1 E jLj=jMj” (8m 2 dom(L): 9i< jM j: m= M [i])

We prove that
"G Gritrue) =fiispkmh g 1@ (5.3)

Using the tactics wpand eqobs_in we construct the relational procedure informa-
tion for the oracles in the environment of both games. We thenextend it automat-
ically to the adversary A to obtain the information that we need to prove the
equivalence. The script we use to prove[{5]3) is just

deadcode ; eqobs_ctxt ; wp; ...

The tactic deadcoderemoves the random assignment tq in Gy, while eqobs_ctxt
removes the common pre x and su x in both games except for the instruction
L  nil because it a ects the invariant ;H2i. The intermediate goal after applying
these rst two tactics is

L nil M ;L niI::fpk;skg) :ngA 1 h2i

The tactic wpis then used to compute the weakest relational pre-conditia of =
AN 1h2i with respect to the two resulting program fragments; the ellipsis stands for
a straightforward script to prove that this weakest pre-condition holds. Games Ggg
and G; are thus equivalent onh, pk, , m, and S, which implies

PriGer:h="f(pk; )" m2S]=Pr[G :h=f(pk; )" m2S] (5.4)

GamesGgr and G; are also equivalent on all the variables appearing free in , so
that is a post-condition of G; as well. Furthermore, since the game makes a last
hash call form, m 2 dom(L) is a post-condition of G;. We have that

ANt m2domLl) =) 90 g m= M Ji]
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(In fact, there exists exactly one, but we do not need to provehis.) The probability
of j being one of such indices is at leastq+ 1) * and is obviously independent of
the success of the forgery, thus

Pr(Gi:h=f(pk; )" m2S]
g+l

PriGi:h=f(pk; )*m2S"*m=M][j]] (5.5

We apply now a semantics preserving transformation. Games, eagerly samples
the value ¢ that is given as answer to thej-th hash query, and that will later
become the challenge to the inverter.

(Game G: Oracle H(m): )
(pk;sk) KG (); if m 62dom(L) then
¢ s G; if jLj=) thenh ¢
j s f0;:::;q0; elseh s G;
M;L;S il L  (myh):L;
(m; ) A (pk); M m: M
h  H(m) return L [m]
Oracle Signm):
S m:S;h H(m);
1 .
L returnf ~(sk;h) )
We obtain
S G fi;M ;L;Sipkimish g G
Therefore,

PriGi:h=1f(pk; )"m2S*"m=M [j]] (5.6)
=Pr(G:h=f(pk; ) m2S*m=M][] '
In the next game we modify the way hash queries are computed. df all but
the j -th query we return the image underf of a uniformly sampled element in its
domain, and we store this element in a listP . This is a local change that does not
modify the distribution of the answers. Indeed, sincef is a permutation we have

Ths G s Giho f(pk;r)

In preparation for the next transformation, we also introduce a ag bad to signal
whether the simulation failed, i.e. whether the adversary aked for the signature of

Ml
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/Game Gs: Oracle H(m): R
(pk;sk) KG ¢(); if m 62dom(L) then
¢ s G; if jLj=j thenh ¢
j s f0;::q0; elser s G; h f(pk;r)
P nil; P (m;r):P;
M;L;S il L (m;h):L;
(m; ) A (pk); M m: M
h  H(m) return L [m]
Oracle Signm):
S m:S;h H(m);
if m= M [j] then
bad true;
return f  1(sk;h)
1 5
L else returnf ~(sk;h) )
We prove the equivalence
) GZ Gsitrue) =fj;M ;L;S;pkm;sh g N (M U]%S =) : bad)th
Hence
PriG:h=f(pk; )"m2S*m=M[j]] (5.7)

=Pr{Gg:h=f(pk; )Am2S m=M[]]

In game G4 we modify the signing oracle so that if the signature of the mesage
M [j ] is ever asked, instead of actually computing the preimage ots digest using
sk, the signing oracle simply returns the correspondingd -entry. This entry will be
unde ned, but this poses no problem because as long as the gs&j is correct this

piece of code is unreachable.

(Game (CT Oracle H(m): R
(pk;sk) KG ¢(); if m 62dom(L) then
¢ s G; if jLj=j thenh ¢
j s f0;:::;00 elser s G; h f(pk;r)
P nil; P (m;r):P;
M;L;S il L  (myh):L;
(m; ) A (pk); M m: M
h  H(m) return L [m]
Oracle Signm):
S m:S;h H(m);
if m= M [j] then
bad true;
return P [m]
Ifak-
L else returnf *(sk;h) )




74 Chapter 5. Unforgeability of Full-Domain Hash Signature s

Games Gz and G4 dier only in a portion of code that appears after bad is set,
therefore they are syntactically equal up to the failure evaat bad . The Fundamental
Lemma gives us

PriGs:h=1f(pk; )"m2S*"m=MI[j]": bad]
=Pr[G:h=f(pk; )*m2S~ m=MI[]": bad]

SinceM [[12S =) : bad is a post-condition of G, it does not change anything
if we remove the last term: bad from the event under consideration,

Pr[G:h=f(pk; )*"m2S*m=MIJ]]
=Pr[G:h=f(pk; )*m2S~ *m=M]J[]": bad] (5.8)
PriGs:h=1f(pk; )*"m2S~ *m=M][]

When answering a signing query for a messagm 6 M [j], we may obtain the
preimage of its hash value fromP rather than using f 1, as in gameGs.

(Game Gs: Oracle H(m): )
(pk;sk) KG ¢(); if m 62dom(L) then
¢ s G; if jLj=j thenh ¢
j s f0;:::5q0; elser s G; h  f(pk;r)
P;L nil; P (m;r): P;
(m; ) A (pk); L (mh)=L
y ¥ return L [m]
X Oracle Signm) :
h  H(m);
return P [m]
N\ J

Dene 4 as

8m2 domL):m6 M[j] =) P[m]=f I(sk;L[m]) "
G iMj=) LIM[I=9¢)

We use 4 to prove that the signing oracles in gamess, and Gs are equivalent. To
this end we show that

"G Goitrue) =gggiimh o bl

If m= M [j], then certainly j j M j when the game nishes. In this case, post-
condition 4 implies that h= L[M [j]] = ¥, which in turn gives

PriGs:h=1f(pk; )*"m2S~ m=MI[] Pr G:f (skiy)= x (5.9)

We nally prove that = Gs' ;sk;x;y g Gow. We need to inline the call to the inverter
| in Gow and usey instead of ¢ in Gs. The proof script is straightforward,
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alloc_l ¢ vy; sinline_r l.
eqobs_tl ; deadcode; eqobs_in.

Using the above equivalence we derive
Pr Gs:f (sk;y)= x =Pr Gow:f (sk;y)= x (5.10)
Putting all the above results together, we conclude

PriGer:h=1f(pk; )" m2S]
g+1

Pr Gow : f (sk;y)= x (5.11)

u
A complete proof of asymptotic security follows trivially. Sincef is a one-way
permutation family, Pr Gow :f *(sk;y) = x is negligible in the security parame-
ter provided | runs in PPT. This is indeed the case, and is proved automaticly
in CertiCrypt The number of queriesq made by the forger to the hash and signing
oracles must necessarily be polynomial on the security paraeter . Since the prod-
uct of a negligible function and a polynomial is still a negligible function, it follows
from (&.11) that the probability of a successful existentid forgery is negligible.

5.2 Improved Bound

A tighter security bound for FDH appears in [Coron 2000]; this bound is indepen-
dent of the number of hash queries. This is of much practical igni cance since
the number of hash values a real-world forger can compute isnty limited by the
time and computational resources it invests, whereas the nmber of signatures it
gets could be limited by the owner of the private key. Once theowner of a key has
used it to sign a certain quantity of messages, he could simpldiscard that key and
generate a new one.

Theorem 5.4 (Improved bound). Assume the underlying trapdoor permutation
(KGs ;f;f 1) is homomorphic with respect to the group operation in its domia,
i.e. for every (pk;sk) that might be output byKG¢, and everyx;y, f (pk;x y) =
f(pk;x) f(pk;y). Let A be an adversary against the existential unforgeability
of FDH that makes at mostgq and gs queries to the hash and signing oracles
respectively. SupposeA succeeds in forging a signature for a fresh message within
time t with probability during experiment Ggg. Then, there exists an inverter |
that nds the preimage of an element uniformly drawn from the ange off with
probability © within time t° during experiment Gow, where

0 1 1 1 Qs
s+l s+l
% t+(y+ gs) O(tr) (5.13)

(5.12)
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These bounds hold for the inverter shown in Figuree5.P. The inerter rst samples
g+ 1 bits at random, choosingtrue with probability p and false with probability
(1 p), and stores them in a listT . It answers to the i-th hash query as follows: it
picks uniformly a value r from the domain of f and stores it in a list P, then replies
according to thei-th entry in T: if it is true, answers withy f (pk;r) wherey is
its challenge, if it is falseanswers with simply f (pk;r). In both cases the answers
are indistinguishable from those of a random function. Whenthe adversary asks
for the signature of a messagen, the inverter makes the corresponding hash query
itself and then answers with the m entry in the list P. The simulation is correct
provided the entries in T corresponding to messages appearing in signing queries
are false because in this case the corresponding entries i coincide with the
preimage of their hash value. The aim of the inverter is to inpct its challenge in as
many hash queries as possible, while at the same time maxiniigy the probability of
the simulation being correct. The parameterp is left unspeci ed through the proof
and will be chosen later to nd the best compromise between tlese two competing
goals.

(Game Gow : Oracle H(m): )
(pk;sk) KG ¢ (); if m 2 dom(L) then
y s G; rs G;
x 1 (pk;y) if T[i]= true then
V) - h ¢ f(pk;r)
A(Ij(versall'(y. I (pk;y): elseh £ (pk:r)
b pK P (mr):P;
g Y L (mh):L;
TROL il il
while jTj g do retrn L [m]
b s true ,false Oracle Sign(m) :
T buT h  H(m);
(m; ) A (pk); return P [m]
h H(m)
\_return P[m] * )

Fig. 5.2. The inverter | in the context of the one-wayness game for the family of trapd oor
permutations (KG;s ;f;f ). We use (true |, false) to denote a Bernoulli distribution with
success probability p, i.e. the discrete distribution that takes value true with probability
p and falsewith probability (1 p).

The success of the inverter is not guaranteed by the sole suess of the forger.
It depends on two additional conditions: that the simulation is consistent, so that
the forger behaves as expected, and that the forgery can be ed to compute the
preimage of the challengey.

Let us analyze rst the probability of the simulation being ¢ onsistent. The forger
A must not be able to distinguish the simulation from the experiment in Ggg. The
forger's view, and in particular the distribution of the answers it gets from the hash
and signing oracles must be the same as in the original expenent. The responses
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of the simulated hash oracle are uniformly distributed, as n the original oracle.
However, the inverter might not be able to answer with consisent signatures to
every signing query made by the forger. The reason is that thénverter knows the
preimage of a message hash only if the hash was computedfa@k; r) for a random
r, which occurs only if the corresponding entry in the list T has been chosen as
false Note that we did not have this problem in the previous proof, because the
mere fact that the guess of the inverter is correct implied that all signing queries
could be consistently answered.

The forgery (m; ) that A outputs can be used by the inverter to compute the
preimage of its challenge only if the hash of message has been computed as
¢ f(pk;r) for a random r, which occurs only if the T -entry corresponding to
m has been chosen beforehand asue. Indeed, if that is the case and the forged
signature is correct, we have

f sk;y)=f Ysk;Hm)) r 1= rt

We begin our sequence of games by bounding the probability ahe above two
conditions. To this end, in gameG; we instrument the hash oracle to keep track of
the indices of queries. We add the initialization of list T at the end of the game, so
that it becomes part of the probability space and its indeperdence from the rest of
the game is obvious.

(Game G Oracle H(m): )
(pk;sk) KG (0; T if m 62dom(L) then
i 0; 1 nil; h s G;L (m;h):L;
L;S nil G‘{ | (m;i) il
(m; ) A (pk); i+l
h  H(m); 1 return L [m]
T nil Oracle Sign(m) :
whilejTj qgdo Inits S m:S;h  H(m);
b s true |, false returnf 1(sk;h)
T b:T 1 )

We require that the forged signature veri es, but in addition that the entry in T
corresponding tom be true and that the entries corresponding to signing queries
be false

success® T[I[m]] » 8m°2 S:: T[I [mI] (5.14)

Observe that this condition alone implies the freshness of mssagem, we do not
need to state it explicity. We would like to compute now a lower bound for
Pr(Gy:h=f(pk; ) ~ succeskin terms of Pr[G;:h= f(pk; )*» m2 S]. This
would be a relatively easy task if the eventsuccessvere independent ofh = f (pk; ),
but this is not the case. However, we have for any initial memoy
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Pr[G.;; :h=f(pk; )" succesk

JG1IK  1(h=t (pk; )~ succesy
K (% JdnitrK (% Th=t (pk; ) 0 Tsuccess %)
K (% Lh=t(pk: yrmasy © Pr[lnitr; ©:succesp)

(5.15)

Thus, computing the original probability is equivalent to m easuring a function that

can be expressed as a product of two factors, one of which is ehprobability of

event successfter initializing T in the intermediate memory ° The advantage of
doing this is that the second factor in the product is upper baunded by a constant
under some conditions on °that we can prove to hold. Namely, we can show that
the following is a post-condition of the piece of codes)

jLj g+1 ~jSj g ™ ran(l)=[jLj 1:0] (5.16)
Furthermore, we can assume thatm is not in S in memory ° because otherwise
the measured function would be null. Under this conditions,we will show that
p(l p)% Pr[lnity; °:succesp

Consider the loop that initializes T,

def

c 2 whilejTj qdo(b s true ,false T b:T)
and de ne

F(in) £ §n<ithenJTi n]K elsep
G (bn) ¥ if n<i thenJ T[i n]K elsel p
i21
This may seem abstruse at rst sight, but intuitively, F (i;q k) equals the prob-
ability of T[i] being true after executing Initr in a memory wherejTj = k, while
G (i;q k) is a lower bound on the probability of 8 2 I: : T[i]. We prove the

following invariant about the while loop c: for every index i and list of indices |
such thati 2 I,

F@;q jJTK )G (I;g j JTK j) Pr[c; :T[i]*8i21::TI[il (5.17)

For any memory satisfying (5.18) and wherem 2 S, if we take i = | [m] and
| = 1 [S], we obtain

p(l p* F (;0)G (lq)
Prllnity; :TI[i]~8i21:: TJi
= Pr[Initr; :succesp

Since any intermediate memory °in (515) satis es (5.18), it follows from the above
inequality that
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p(1 p)® PriGegr:h=f(pk; )" m2S]
=p@ pPBPr[G :h=f(pk; )*m2S] (5.18)
Pr{G; : h = f (pk; )" succesk

In the next game, G, we modify the hash oracle to answer to thei-th query
according to the corresponding entry in listT : the oracle samples a random element
r in the group, stores it in list P, and respondsy f (pk;r) if T[i] is true, and
simply f (pk;r) otherwise. In this latter case, the inverse image of the haslvalue
can be recovered fronP .

(Game G Oracle H(m): )
P s G; if m 62om(L) then
T nil; r s G;
whilejTj qgdo if T[i]thenh ¢ f(pk;r)
b s true ,false elsen  f(pk;r)
T buT P (mr):P;
(pk;sk) KG (); L (mh):L;
i 0; 1 nil; | (m;i) 1
P;L;S nil; i i+1
(m; ) A (pk); return L [m]
h H(m ; Ce
L (m) Oracle Signm): ::: )

Observe that the transformation of G; into G, can be justi ed by locally reasoning
on the code of the hash oracle, without needing to apply the lay sampling technique
(as we had to do in the previous proof), thanks to the fact thatf is a permutation
and f (pk;r) acts as a one-time pad,

ThsG'igr s G h oy f(pkir)

We now modify the way the signing oracle answers to a querym when the
corresponding entry T [I [m]] is true: instead of answering with a proper signature,
it answers with just P [m]. By using the Fundamental Lemma we will see that this
change does not modify the probability of the event that interests us.

(Game IGsl (G4 : Oracle H(m): ::: )
y G Oracle Sign(m):
T nil S m:S;h  H(m);
whilejTj qdo if T{I [m]] then
T b T A R
| | rewun (KT
(pk;sk) KG 1) else returnf  I(sk: h)
i 0; 1 nil;
P:L;S nil
(m; ) A (pk);
h  H(m)
- J
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Game G; is semantically identical to G, (ignoring bad) and di ers from G, only in
a portion of code appearing after agbad is set. Thus,

Pr{Gs:h=f(pk; )" succes$: bad]=Pr[ G, :h= f(pk; )" succes$: bad]

But since success=) : bad is a post-condition of Gg, it does not change anything
if we remove the last term: bad from the event under consideration,

Pr{Gs:h=f(pk; )" success=Pr[G;:h= f(pk; )" succes$: bad]
Pr(Gs:h=f(pk; )~ succesk (5.19)

The signing oracle might as well respond withP [m] to every query, regardless of
the value of T[I [m]],

/Game G: Oracle H(m):::: A
¢ s G; if m 62dom(L) then
T il r s G;
whilejTj qgdo if T[i]thenh ¢ f(pk;r)
b s true ,falsg elseh  f(pk;r)
T buT P (m;r): P;
(pk;sk) KG () L (mh):L;
i 0l nil; I (m;i) 1
P;L;S nil i i+1
(m; ) A (pk); return L [m]
h H(m); Oracle Sign(m) :
y ¥ S m:S;h  H(m);
X P[m] ! return P [m]
NS J

We can guarantee that the response given is a proper signatarwhenT [l [m]] is
falseby proving the following post-condition of game Gs:

gm;h)y2L: T[I[m]] =) h=y¢ f(pk;P[m]) "
ST [m]] =) h=f(pk;P[m])

This allows us to show that the signing oracles inG; and Gs are equivalent and,
using the homomorphic property of f , to show

Pr{Gs:h=f(pk; )" success=Pr[Gs:h=f(pk; )” succesk
PriGs:y f(pk;P[m])= f(pk; )]
=Pr Gow:f I(sk;y)= x
Therefore, we can conclude
p@A p)¥PriGe:h="f(pk; )" m2S] Pr Gow:f (sk;y)= x

We get the bound in the statement of the theorem by choosingp = (gs+ 1) I,
which maximizes the factorp (1 p)%. For this value of p, the factor approximates
exp( 1) gg ! for large values ofgs.
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5.3 Practical Interpretation

If one accepts that it is reasonable to draw practical conclgions from a security
proof in the random oracle model, then the results above may & used to choose the
scheme parameters based on an estimate of the time needed twert the underlying
trapdoor permutation.

The best known method to invert the RSA function is to factor its modulus.
The General Number Field Sieve (GNFS) |[Lenstra and Jr.[1993]s currently the
most e cient way of factoring large composite integers like RSA moduli; it has been
used to factor several RSA moduli from the RSA Factoring Chalenge, including
the 512-bit RSA-155 number and the largest (non-special) iteger factored with
a general-purpose algorithm, the 768-bit RSA-768 number_[keinjung et al. 2010].
On heuristic grounds, an odd composite numbeiN can be factored using GNFS in
time sub-exponential with respect to its size in bits. Concetely, let

Lnl; 1% exp(( + o1)log(N) log(log(N))* ) (5.20)

where the constant term that accompanies tends towards zero asN increases. A
good implementation of GNFS takes aboutlL \ [1=3; 1:923]time to factor a number
N . This heuristic cannot be used directly to estimate the numker of operations
required to factor a certain N [Lenstra and Verheul 2001]. However, experimental
data suggests that it can be used for limited range extrapoltion. If one knows,
empirically, that factoring an RSA modulus N using GNFS takes timet, then
factoring an RSA modulusM > N will take approximately time

Lw [1=3; 1:923]

Ly [1=3;1:923] (5.21)

(omitting the constant term o(1)). If M N, however, the e ect of the constant
term can no longer be ignored and the extrapolation will oveestimate the time
needed to factorM .

The computational e ort involved in the factorization of th e 512-bit number
RSA-155 has been estimated at around 8400 MIPS-yedtsor slightly less than 258
operations [Cavallar et al.l2000]. In comparison, the comptational e ort involved in
the factorization of the 768-bit number RSA-768 has been eshated at around 257
operations [Kleinjung et al![2010]. Extrapolating from this estimate using [5.21), we
can make a rough prediction of the computational e ort that w ould take to break
larger RSA moduli (Figure B.3).

GNFS could factor a 1024-bit number in around 2’ operations, and a 2048-
bit number in around 2°7 operations. Assume some safe bounds fay; and gs,
259, g5 229, To ensure that no forger within these bounds could forge a
RSA-FDH signature within t = 28 operations, one should pick an RSA modulus
such that factoring it takes at least gs(t + (g + 0s)O(trsa)) operations, otherwise

! One MIPS-year is the equivalent of a computation running dur ing a full year at a
sustained rate of one million instructions per second. Consumer desktop PCs at the
time of this writing attain speeds of up to 80,000 MIPS.
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Fig. 5.3. Estimates for the computational e ort required to factor la rge RSA-moduli.

one can iterate the construction in Theorem5.4 aboutgs times to invert the RSA

function in less time than using the GNFS algorithm. For a modulus of sizek,

trsa = O(k?) when the public exponent is small. A 1024-bit modulus would ot be

enough, but a 2048-bit modulus would do. In contrast, if one vere to choose the
modulus according to the original security bound, even a 208-bit modulus would

not su ce.

The above guidelines for selecting key sizes by extrapolath should be taken
with care. One should not forget that besides the fact that the analysis is based on
heuristic ground, we are ignoring theo(1) factor from (520). |Shamir and Tromer
[2003] said to this respect:

To determine what key sizes are appropriate for a given apptation, one

needs concrete estimates for the cost of factoring integersf various sizes.
Predicting these costs has proved notoriously di cult, for two reasons. First,

the performance of modern factoring algorithms is not undestood very well:

their complexity analysis is often asymptotic and heuristic, and leaves large
uncertainty factors. Second, even when the exact algorithritc complexity is

known, it is hard to estimate the concrete cost of a suitable lpothetical

large-scale computational e ort using current technology; it's even harder
to predict what this cost would be at the end of the key's planred lifetime,

perhaps a decade or two into the future.

Even leaving aside the possibility of a breakthrough in numter theory or the dis-
covery of a new factorization method that drastically improves on GNFS, there are
a myriad of tweaks and hardware optimizations that can be redlily or at least

hypothetically applied to cut down the cost of factoring an R SA modulus using
GNFS. It is conjectured that it could be possible to factor 1024-bit integers, and
hence to break 1024-bit RSA keys, in 1 year using a special hdware device that
could be built at a cost of US$10M |[Lenstra et all 2003;_Shamiand Tromer 2003].
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5.4 Discussion and Related Work

An earlier example of a signature scheme that follows the samhash-then-decrypt
pattern as FDH is the PKCS #1 scheme proposed by RSA Labs [RSA @ta Security,
Inc. 2002]. The latest version of PKCS #1 uses the following nessage encoding as
a hash function

ENCODHEm;len) € 00k01k FF  FF k 00k h(m)

Enough FF bytes are inserted to reach the intended lengthlen of the encoded
message. The valuéh(m) is (an encoding of) the digest of the message computed
using one of MD2, MD5, SHA-1, SHA-256, SHA-384 or SHA-512. Té problem
with the above padding is that it does not map messages to the rgire domain
of the RSA function, but instead to a much smaller set of encoéd messages. As a
consequence, the scheme is not known to admit a security redtion to the standard
RSA problem.

The generic Full-Domain Hash signature scheme based on a oweay trapdoor
permutation was rst described in the seminal work of Bellare and Rogaway|[1993]
to illustrate the applicability of the Random Oracle Model. In that work, the authors
give in an appendix a sketch of a proof of its security againsiadaptive chosen-
message attacks. A more detailed proof of the exact securitpf the RSA-based
variant of FDH is given in [Bellare and Rogaway|1996,Theorem3.1]; the bound
corresponds to the one we showed in Secti¢n$.1. The bound wegved in Section5.2
is due to|Coron [2000]. Unfortunately, it is not possible to further improve the
security bound of FDH and prove that computing a forgery is ashard as inverting
RSA. There is no tighter reduction than the one in Theorem[5.4 as showed by
Coron [2002].

Bellare and Rogaway|[1996] proposed the Probabilistic Sigature Scheme (PSS)
as a replacement for FDH; it has since then been incorporateihto the PKCS #1
standard as an alternative signing method. PSS is roughly ag cient as FDH but
admits a tight security reduction. The Probabilistic FDH sc heme (PFDH) [Coron
2002] is a simple probabilistic variant of FDH that follows the same design prin-
ciples as PSS and also admits a tight reduction, but at the cassof slightly longer
signatures. As FDH, PFDH uses a hash functionH : f0;1g ! G and a trapdoor
permutation f. Formally, PFDH is parametrized by the length ko of the random
salt it uses, and is composed of the following triple of al@rithms:

KG £ (pk;sk) KG ¢; return (pk;sk)
Sign(sk; m) £ r s f0;1g*; return (f Y(sk;H(mkr));r)
Verify(pk; m; (;r)) £ if f(pk; )= H(m kr) then return true else return false

Observe that FDH is obtained as a special case of this schemey Isetting ko = 0.
We have the following result about the security of PFDH.

Theorem 5.5. Let A be an adversary mounting a chosen-message existential
forgery attack against PFDH that makes at mostqy queries to the hash oracle
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and at mostgs  2X° queries to the signing oracle. Suppose the adversary succeeds
in forging a signature for a fresh message with probability within time t. Then,
there exists an inverter| that nds the preimage of an element uniformly drawn
from the range of f with probability © within time t° where

0 1 Qs
1 — ex 1
& p( 1)

t® t+(qu+ 0s) O(tr) + o as O(ko)

This means that whenky  10g,(0s), the security of PFDH is tightly related to the
problem of inverting the underlying trapdoor permutation. If a shorter salt is used,
PFDH remains provably secure, but a tight reduction is not possible.

Katz and Wang [2003] describe yet another signature schemehat achieves a
tight reduction using a single bit as random salt. The randomsalt can be remove al-
together by computing this bit in a deterministic (but secret) way. This scheme uses
the same key generation procedure as FDH and PSS; the signatiand veri cation
algorithms are as follows,

Sigr(sk; m) £ if m 2 S then return S[m]
elseb s f0;1g; f I(sk;H(bk m)); S[m] ;
return
Verify(pk;m; ) £ if f(pk; )= HOkm)_f(pk; )= H(1km)
then return true else return false

The signature algorithm is stateful: it will compute a signature for a message only
once and return the same signature subsequently. To avoid niataining state and

remove the randomness, the bitb could be computed deterministically but in a

secret way from messagen. To avoid computing two hash values during veri cation,

the bit b could be appended to the signature. We have the following ragdt about

the security of the above scheme,

Theorem 5.6. Let A be an adversary mounting a chosen-message existential
forgery attack against the Katz-Wang scheme that makes at mbsy queries to
the hash oracle and at mostis queries to the signing oracle. Suppose the adversary
succeeds in forging a signature for a fresh message with pediility  within time t.
Then, there exists an inverter| that nds the preimage of an element uniformly
drawn from the range off with probability © within time t° where

o 1

2
t t+(ow+ gs+1) O(tr)

Using just one random bit we have cut down the gap between the security of the
scheme and the problem of invertingf by a factor of gs !

The impossibility of nding a tight reduction from the secur ity of a scheme
to a hard problem does not necessarily mean that we should deethe scheme as
insecure. It could be the case that the hard problem is not geeral enough, or maybe
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a slightly modi ed version of the scheme would admit a tight reduction. Or perhaps
the protocol is indeed secure for practical matters, even tbugh a tight reduction
does not exist. The absence of a tight reduction for RSA-FDH des not mean that
its security is only loosely related to the RSA problem. The esult about the Katz-
Wang scheme described above suggests exactly the contray fact, it is easy to
see that the security of RSA-FDH is equivalent to the following problem:

You are given an RSA modulusN and its public exponent e, just as in the

uniformly sampled from Zy . At any time you may chose a valuey; and get
its e-th root modulo N, i.e. a solutionx; to x7  yi(modN); you may chose
up to gs of such values. Your goal is to compute thee-th root modulo N of
one of the remainingy; values.

It is hard to imagine how this problem could be any easier thansolving the standard
RSA problem.

Using CryptoVerif [Blanchei I2006],. Blanchet and Pointcheval|[2006] gave an al
ternative formal proof of the security of FDH against existential forgery under
adaptive chosen-message attacks. This work has stirred ceiderable interest and
shown the bene ts of machine-checked veri cation. It also exposed one major weak-
ness ofCryptoVerif. it deviates from the style that is natural to cryptographer s since
it is di cult to recover a reductionist argument from the pro of trace that the prover
outputs, and even if one manages to do so, most likely the reduion will not be
optimal. Indeed, only the original, suboptimal bound of Bellare and Rogaway has
been proved inCryptoVerif.

Our machine-checked proofs follow quite closely the pen-ahkpaper game-based
proofs of FDH (cf. |[Pointcheval [2005]). There is however onémportant di erence:
in order to justify local transformations, machine-checkal proofs must make in-
variants explicit and establish formally their validity. P roving that invariants hold
constitutes a fair amount of work. More generally, machineehecked proofs must
justify all reasoning, including reasoning about side condions and about elemen-
tary mathematics (groups, probabilities) in terms of basic de nitions. In contrast
to game transformations, for which suitable tactics have ben designed, this form
of reasoning is not always amenable to automation, and thus ecounts for a sub-
stantial amount of the e ort and of the size of the proofs. Indeed, we estimate that
about a third of the proof scripts are devoted to facts about probabilities. In spite
of this, the size of machine-checked proofs remains reasdria: the formalizations of
Bellare-Rogaway and Coron proofs are about 3,000 lines eaclivhile the length of
our proofs might look prohibitive in comparison to published proofs, we expect that
machine-checked proofs will shrink substantially asCertiCrypt (and its underlying
libraries) mature.

It must be noted that much of the proof lies outside of the trusted base: in
order to trust the proofs of FDH, it is su cient to trust our fo rmalization of the
scheme and of the security statement, the formalization of pobabilistic programs
provided by CertiCrypt, and the proof checker of Coq In particular, trusting the
proofs of FDH does not require trusting the sequence of gamesor the proofs of
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transitions, nor the proofs of invariants. In this respect, CertiCrypt provides the
highest possible level of assurance for the security of a goyographic scheme, and
breaks the symmetry between the e ort of writing and checking a cryptographic
proof. Both usually require a lot of expertise in cryptography, a lot of time, and a
good understanding of the proof; in contrast, it is rather immediate and simple for
a third party to check a proof in CertiCrypt



Ciphertext Indistinguishability of OAEP

hen we rst discussed in Chapter[d the de nition of semantic secuity for
W public-key encryption schemes we observed that in order to ehieve this no-
tion of security an encryption scheme must be necessarily pbabilistic. A deter-
ministic asymmetric encryption scheme cannot be semantidéyy secure because an
adversary could trivially decide whether a given ciphertex is the encryption of a
plaintext by encrypting the plaintext and comparing the resulting ciphertext to the
one it was given. It is possible, however, to use a determinii& encryption scheme as
a building block to construct a semantically secure probalistic encryption scheme.
The following de nition gives a general way to construct a probabilistic encryption
scheme from any family of trapdoor permutations.

De nition 6.1 (Padding-based encryption scheme). Let ;;k :N! N be
three functions such that8: ( )+ () k( ). Consider a family of mappings

fo;1g OF C) 1 0;1gkC)
Ao f0;gkC) 'f 0;1g () [f?g

such that s injective and the following consistency condition is sat ed
8:m 2f0;1g (); r2f0;2g): 2~ ( (mkr)=m

Then, given a family of trapdoor permutations (KGs ;f;f 1) on f0;1g*( ), one can
construct a probabilistic padding-based encryption schemgG; E; D) as follows:

Given : N, the key generation algorithmKG( ) runs the key generation al-
gorithm KGs ( ) of the family of trapdoor permutations and returns the pair of
keys(pk; sk) that it obtains as result. We assume that the description of ;"
is public, so there is no need to return it as part of the key genation process.
Given a public keypk and a messagen 2 f 0;1g () the encryption algorithm
E(pk; m) chooses a uniformly random bitstringr 2 f0;1g () and returns a

ciphertext computed asf (pk; (mkr)) 2 f0;1g<( ).

87
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Given a secret keysk and a ciphertextc 2 f 0; 1g“( ), the decryption algorithm
D(sk;c) returns m =~ (f 1(sk;c)), which is either a message irf0;1g ( ) or
the special symbol? , meaning that the ciphertext is invalid.

Many public-key encryption schemes can be viewed as partidar instances of
the above construction, including OAEP [Bellare and Rogaway 1994] and its vari-
ants OAEP" [Shoup! 2001]SAEP, SAEFP* [Boneh!2001], andREACT [Okamoto and
Pointcheval [2001b]. In this chapter we will discuss the seatity of OAEP.

Optimal Asymmetric Encryption Padding ( OAEP) [Bellare and Rogaway 1994]
is a prominent public-key encryption scheme based on trapdor permutations, most
commonly used in combination with the RSA and Rabin functions. OAEP is widely
deployed; many variants of OAEP are recommended by several standards, including
IEEE P1363, PKCS, ISO 18033-2, ANSI X9, CRYPTREC and SET. Yet, the history
of OAEP security is fraught with di culties. The original paper of B ellare and
Rogaway [1994] proves that, under the hypothesis that the uderlying trapdoor
permutation family is one-way, OAEPis semantically secure under chosen-ciphertext
attacks.|Shoup [2001] discovered later that this proof onlyestablished the security of
OAEP against non-adaptive chosen-ciphertext attacks (ND-CCA), and not, as was
believed at that time, against the stronger version of ciphetext indistinguishability
that allows the adversary to adaptively obtain the decryption of ciphertexts of its
choice (ND-CCAZ2. In response, Shoup suggested a modi ed scheme, secure ags
adaptive attacks under the one-wayness of the underlying prenutation, and gave a
proof of the adaptive security of the original scheme when itis used in combination
with RSA with public exponent e = 3. Simultaneously, Fujisaki et all [2004] proved
that OAEPIn its original formulation is indeed secure against adaptve attacks, but
under the assumption that the underlying permutation family is partial-domain
one-way. Since for the particular case of RSA this latter assmption is no stronger
than (full-domain) one-wayness, this nally established the adaptive IND-CCA2
security of RSAOAEP. Unfortunately, when one takes into account the additional
cost of reducing the problem of inverting RSA to the problem d partially-inverting
it, the security bound becomes less attractive. We note thatthere exist variants of
OAEP that admit more e cient reductions when used in combination with the RSA
and Rabin functions, notably SAEP, SAEP+ [Boneh!2001], and alternative schemes
with tighter generic reductions, e.g. REACT [Okamoto and Pointcheval 2001D].

Here we focus on a machine-checked proof of thtND-CPA security of OAEP
in the random oracle model, with a security bound that improves on the bound of
Bellare and Rogaway [[2006] game-based proof. We report as liven a signi cantly
more challenging machine-checked proof of théND-CCA2security of OAEP in the
random oracle model.

OAEP uses as a padding scheme a two-round Feistel network based dwo
hash functions G;H, and is commonly used together with the RSA and Rabin
permutations. Figure 6.1 shows the Feistel network represgation of the padding
mappings ( ; ") used in OAEP for encryption and decryption.

During encryption, a messagem 2 f 0;1g is rst padded with enough zeros
to obtain a bitstring of length k , which is then fed to the encryption Feistel
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Fig. 6.1. Feistel network representation of the padding scheme used n OAEP for encryp-
tion (left) and decryption (right).

network together with a random bitstring r 2 f 0; 1g ; the ciphertext is the image
under f of the resulting bitstring. To decrypt a ciphertext ¢, rst compute its
preimagef *(sk;c) to obtain a bitstring of length k, and then run it through the
reverse Feistel network to obtain a bitstring (m k z) 2 f 0;1gX . If z is not the all-
zero bitstring, the ciphertext is rejected as invalid, otherwise, m is returned as its
decryption. For concreteness, let us write down the de nition of the OAEP scheme
for a generic trapdoor permutation.

De nition 6.2 (OAEP encryption scheme). Let (KG¢;f;f 1) be a family of
trapdoor permutations on f0; 1g%, and let

G:f0;1g !'f 0;1g" H:f0;1g 'f 0;1g
be two hash functions, with + <k . Let k; = k . The OAEP scheme is

composed of the following triple of algorithms:
KG( ) £ (pk;sk) KG ¢ (); return (pk;sk)
E(pk;m) & r s f0;1g; s G(r) (mkO<); t H(s) r; returnf (pk;skt)

D(sk;c) £ (skt) f Xsk;o;r t H(s; m s G(r);
if [m]k, = 0k: then return[m] else return?

where [x], (resp. [x]") denotes then least (resp. most) signi cant bits of x.

The way padding is handled plays a crucial role in the proof ofIND-CCA2
security of the scheme in the random oracle model that we desibe in Section[6.2.
To prove that OAEP is IND-CCA2secure, it is necessary to devise an e cient way
to simulate the decryption oracle without having the trapdoor to the underlying
permutation. It turns out that there is an e cient way to simu late the decryption
oracle from the history of queries that an adversary made to he hash oracles
G and H. Suppose the adversary queries the decryption oracle with @iphertext
c= f(skt), then there are two possibilities:
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1. Either s has been queried tdH andr = H(s) t has been queried tdG. In that
case, the corresponding plaintext can be found by inspectig the list of queries
(r%G(r9), (s®%H(s%)) made to G and H respectively. For each pair of queries,
check whetherc coincides with f (pk; sk (H(s) r9) and the (k ) least
signi cant bits of G(r% s®are all zeros. If one such pair of queries is found,
the most signi cant bits of G(r% s°form the corresponding plaintext;

2. Or else there is only a minute chance that the ciphertext bevalid because it
depends on a uniformly random value (either one of5(r) and H (s), or both).

If the permutation is partial-domain one-way, the ciphertext may be safely
rejected as invalid.

6.1 Indistinguishability under Chosen-Plaintext Attacks

Unsurprisingly, padding does not play any role in the proof d semantic security,
because there is no need to simulate the decryption oracle.ferefore, in the rest of
this section we assume without loss of generality that = k

Theorem 6.3 (IND-CPA security of OAEP). Let A be an adversary against
the semantic security of OAEP under chosen-message attacks that makes at magt
queries to the hash oracléc and at most gy queries toH. Suppose this adversary
succeeds in guessing the hidden bit with probability — within time t. Then, there
exists an inverter | that nds the preimage of an element uniformly drawn from
the domain of the permutationf with probability © within time t% where

0 1 G

> + > (6.1)

t° t+ qs gy O(t;) (6.2)

and t; is an upper bound for the time needed to compute the image of édtring
under f .

Proof. We claim that the inverter | shown in the context of gameGoy in Figure 6.2
achieves the probability and time bounds in [6.1) and [6.2). The inverter runs the
adversary A in a simulated environment. It intercepts queries to the has oracles
G and H and answers exactly as a random oracle would do, but keeps red of the
gueries and their responses. Instead of computing the chahge ciphertext to the
IND-CPA adversary as an LR-oracle would do in the realND-CPA game, it replaces
the challenge ciphertext with its own challengey. When adversary A halts, the
inverter | inspects the history of queries that were made to the hash ordes G
and H and tries to reconstruct a preimage of its challengey under f . It turns out
that the probability that the inverter succeeds in reconstructing such a preimage is
closely related to the probability with which adversary A wins the IND-CPA game.

The upper bound on the execution time of the inverter can be jstied by
examining just the game Gow . The only non-constant overhead incurred is in the
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(Game Gow : Oracle G(r): h
(pk;sk) KG ¢ (); if r 62dom(L ) then
y s 0;1g¢; g s fo1g¢
x 1 (pk;y) L (ng):lL
Adversary 1 (pk;y): return Lr]
L;M nil; Oracle H(s):
(mo;m1) A 1(pk); if s62dom(M ) then
B A 2(y); h s f0;1g ;
if 9r 2 dom(L);(s;h)2 M : M (s;h): M
f(pk;skh r)y=vy return M [s]
thenreturnsk (h )
else returnoX
\ /

Fig. 6.2. The inverter | in the context of the one-wayness game for the family of trapd oor
permutations (KG;;f;f 1).

reconstruction of the preimage of the challenge by inspeatig the history of queries.
In the worst case, it amounts to g4 computations of the permutation f for each of
the gs queries, from which (6.2) follows directly.

To prove that the inverter achieves the probability bound (E1), we will exhibit
a sequence of games relating the probability

O=Pr Gow:x=1 I(sk;y)

of | successfully invertingf on its challengey, to the probability
h [
=Pr Gnpcpa :b=D
of the adversaryA correctly guessing the value of the hidden bitb in the IND-CPA
game. We start from the IND-CPA game where oracless and H are implemented
as random oracles this is justi ed by the random oracle model .

(Game GinDCPaA - Oracle G(r): h
(pk;sk) KG (); if r 62dom(L ) then
L:M nil; g s f0;1g¢
(mo;m1) A 1(pk); L (rg):lL
b s f0;1g; return L [r]
y E (pk;mp); Oracle H(s):
b A 2(y) if s62dom(M ) then
h s f0;1g ;
M (s;h) = M
L return M [s] )

The hypothesis on the bound on the number of queries the adveary makes toG
can be readily encoded as:
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Pr[GINDCPA ]LJ CIG] =1

In the following game, we inline the key generation and the earyption of my, which
uses a random seed, and we eagerly sample the response that the random oracle
G gives back ifr is ever queried:

(Game G : Oracle G(r): )
(pk;sk) KG ¢ (); if r 62dom(L) then
L;M nil; if r=nrtheng ¢
rs f0; 19 ; elseg s f0;1g
g s fO;1g¢ ; L (rg):lL
(mg;my) A 1(pk); return L [r]
b s f0;1g; .
L - Oracle H(s):
g G(f)s g my if s 62dom(M ) then
h H(s);t h r; hs fo1g
y f(pk;skt); M (s;h)y: M
b A 2y :
L return M [s] )

The resulting game G, is semantically equivalent to the initial game, and thus we
have h i h i
Pr GINDCPA ‘b=0b =Pr G]_ b="0 (63)

Our objective is now to eliminate § from the code of the oracleG, because if we
manage to do so, we will be able to makes completely random and remove the
dependency ofy on b.

In the next game we modify the oracleG so that if * is ever queried, a agbad
is set to true and the answer is not recorded in the oracle memory.

(Game G Oracle G(r): A
(pk;sk) KG ¢ (); if r = P~ then
L;M nil; bad true; return §
rs 0,19 ; else
0 ¢ f0;1g¢ ; if r 62om(L) then
(mo;m1) A 1(pk); gs fO;1g¢
b s f0;1g; L (rg):=L
rS] g mp; ) return L [r]
y P(E)Slz;’stk t: i Qracle H(s):
B A () if s62dom(M ) then
h s f0;1g ;
M (s;h) = M
9 return M [s] )

In order to justify this transformation, we de ne the follow ing relational invariant:
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2 € (F2domlL) =) L[F]= @M~ (8rr 6 rhli =) Lr]hdi = L[r]hei)

The above invariant allows us to prove that oracleG answers queries in the same
way in gamesG; and G,. We prove that this invariant is established after L is
initialized in G; and G, and that the implementations of G and H preserve it. We
know from the fact that A is well-formed that it cannot directly modify the global
variablesL, i, and §. Therefore, the invariant 1, is preserved through calls to the
adversary. We then inline the call to G in the body of game G;. At this point the
invariant holds and either the adversary A has already queriedr*, in which case it
follows from the invariant that the answer to the call is @, or it has never queried
i, in which case the same follows directly by applying dead coel elimination and
constant propagation. Hence,
h [ h i
Pr Gi:b=D0 =Pr G,:b="0 (6.4)
We will now use the Fundamental Lemma to removef altogether from the code

of oracleG. We de ne a gameG; syntactically identical up to bad to the previous
game.

(Game Gs: Oracle G(r): h
(pk;sk) KG ¢ (); if r = P~ then
L;M nil; bad true;
rs f0;1g ; if r 62dom(L) then
0 s fo;1g* g s f0;1g¢ ;
(mo;m1) A 1(pk); L (rg):lL
b s f0; 1g; return L [r]
s g my else
h H(s);t h if r 62dom(L) then
y f(pkiskt); g s fo1gc ;
B A () L (mg):tL
return L[r]
Oracle H(s): :::
NS J
It follows from the Fundamental Lemma that
h [ h [
Pr G:b=b Pr Gs:b="0b Pr[Gs : bad] (6.5)

Since@ no longer appears inG, we can now sample it later in the game. We also
simplify the implementation of oracle G for the sake of readability by coalescing
the portion of code appearing in both branches of the conditnal.



94 Chapter 6. Ciphertext Indistinguishability of OAEP

(Game Gy Oracle G(r): )
(pk;sk) KG ¢ (); if r=rthenbad true
L;M nil; if r 62dom(L ) then
s 10,19 ; g s f0O;1g¢ ;
(mo;m1) A 1(pk); L (ng):lL
b s f0; 1g; return L [r]
. Kk
g ¢ 7019 : Oracle H(s):
s g My _ if s 6200m(M ) then
h  H(s);t h hs f0;1g ;
y  flpkiskt), M (s;h) = M
oA 2(y) return M [s]
. J
We have
h i h [
Pr Gs:b=b =Pr G :b=0 (6.6)
Pr{Gs :bad] = Pr[ G4 : bad] (6.7)

We make now a transformation that relies on algebraic propeties of the exclu-
sive or operator: instead of samplingd and de ning s in terms of it, we can sample
s and de ne ¢ in terms of s. This is justi ed by the following program equivalence:

g s folgt ;s g mp' Ig‘;g;?nbgs s fo;1gk ;g s mp
This transformation is sometimes calledoptimistic sampling and is a pattern that
appears recurrently in game-based proofs; we gave a proofing the relational Hoare
logic in Section[3.2.2.

We can now eliminate the assignment to§ as dead code, and sampls at the
beginning of the game. Since/ no longer depends on the hidden bib, we can sample
b at the end of the game. The resulting gameGs is:

(Game Gs: Oracle G(r): h
(pk;sk) KG ¢ (); if r = fthenbad true
L;M nil; if r 62dom(L) then
rs f0;1g ; g s f0;1g
s s fO;1g¢ ; L (rg):lL
(mo;m1) A 1(pk); return L [r]

h H(t hof Oracle H(s):
y flpkiskt); if s 620om(M ) then
b A 2(y); h s fo;lg;
b f0;1g M (s;h)y: M
return M [s]
_ J

We have Pr[G, : bad] = Pr[ Gs : bad]. It is obvious that, in the above game,b and
b are independent and thus



6.1. Indistinguishability under Chosen-Plaintext Attack S 95
h [ h i
Pr Ga:b=0 =Pr Gs:b=10 =

1
2
The objective now is to bound the probability of bad being set. We no longer

care aboutb, so we remove the instruction sampling it. We reallocates to a global
variable § and we eagerly sample the value oH (8).

(6.8)

(Game Gs: Oracle G(r): h
(pk;sk) KG ¢ (); if r=nPrthenbad true
L;M nil; if r 62dom(L) then
r s 0,19 ; g s f0O1g¢ ;

§ s f0;10¢ ; L (rg):lL
f s fo1g ; return L [r]
(mO;ml) A 1(pk), Oracle H(S):
m HEEE W if s 62dom(M ) then
S K if s= §thenh A
oA a(y) elseh s f0;1g
M (s;h)= M
return M [s]
-

We then modify oracle H so that it does not record the answer in its memory
if § is ever queried, and we inline the call toH in the body of the game. To prove
that this modi cation to H is transparent to the adversary we prove the following
relational invariant between Gg and G;:

(82 domM) =) M8 = f)li ~ (8s:s6 &Ml =) M [s]hli = M [s]ri)

(Game G;: Oracle G(r): h
(pk;sk) KG ¢ (); if r=rthenbad true
L;M nil; if r 62dom(L) then
rs f0;1g ; g s f0;1g¢
§ s fO;10¢ ; L (rg):lL
fi s fo;1g ; return L [r]

t Ao Oracle H(s):

(mo;m1) A 1(pK); if s= & then returnfi

y f(pk;skt); else ifs 62dom(M ) then
B A 2(y) h s f0;1g ;

M (s;h) = M
return M [s]
& J
Thus
Pr[Gs:bad]=Pr[Gs:bad]=Pr[G;: bad] (6.9)

We then revert to the previous implementation of oracle H, which stores the
answer to a query$ in its memory. This allows us to bound the probability of bad
being set by analyzing two di erent cases:
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1. either the adversary queried$ to H before bad is set, in which case we set a
ag badg;
2. or it did not, in which case we set a agbad .

(Game Gs: Oracle G(r): )
(pk;sk) KG ¢ (); if r = then
L;M nil; if §2 dom(M )
rs f0;1g ; thenbad,; true
§ s f0;1g¢ ; else bad, true
f s fo;1g ; D
t A Oracle H(s):
(Mo;m1) A 1(pk); if s62om(M ) then
y f(pk;§kt); if s= §thenh A
b A Ly elseh s f0; 1g
M (s;h) = M
S return M [s] )

We prove the following relational invariant between G; and Gg:
badhli =) (bad;_ bad,)h2i
Hence we have by the union bound,
Pr[G;:bad] Pr[Gg:bad;_bad,] Pr[Gg:badi]+Pr[Gg:bad;] (6.10)

We split the sequence of games and bounblad ; and bad , separately; we deal with
bad rst.

We slice the assignment tobad , o the code of G, we apply again the optimistic
sampling transformation to samplet instead of *, and we reallocatet, y and pk to
global variables, obtaining:

(Game P1: Oracle G(r): A
(pk;sk) KG ¢(); if r=r" &2 domM )then
L:M nil; bad; true
§ s f0;1g¢ ; if r 62dom(L) then
s f0;1g ; g s f0;1g¢ ;

f s fo;1g ; L (rg):lL
r A return L [r]
(mo;m1) A 1(pk); Oracle H(s):
y f(pk;8kf); if s62dom(M ) then
B A 2oy) if s= 8thenh A
elseh s f0;1g
M (s;h) = M
return M [s]
NS J
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We now replace the condition under whichbad ; is set to true by an equivalent one.
We prove that P; satis es the invariant

(8(s;hy2M:s=8=) h=fM)~r@r=H £~ y=1f(pk;skf)
From this invariant we have that
r=fr82domM) (9 (s;h)y2M:f(pk;sk(h r)=y

Therefore we can reformulate the condition under whichbad; is set in G, and
remove * since it is no longer used.

(Game Py : Oracle G(r): )
(pk;sk) KG ¢(); if 9(s;h) 2 M :
L;M nil; f(pk;skh r)=y then
§ s f0;1g¢ ; bad; true
fs f0;1g ; if r 62dom(L) then
fi s 019 ; gs fo;1g¢ ;
(mo;my) A 1(pk); L (rg):L
y f(pk;8kf); return L [r]
B A ) Oracle H(s):
if s62dom(M ) then
if s= 8thenh h
elseh s f0; 1g
M (s;h) =M
Y return M [s] )
We have
Pr{Gg:badi]=Pr[Py:bad.]=Pr[P,:bad;] (6.11)

Next, we revert H to the original random oracle implementation and we slice
away i as dead code. In the resulting games and f are used only to compute
y = f (pk;$ k f). Sinces and f* are uniformly sampled bitstrings, their concatenation
is uniformly distributed, and since f is a permutation, the value of y is uniformly
distributed. This reasoning is summarized in the following program equivalence

8 s fO1g¢ ;£ s fO1g;y f(pk;skf)' ;gt?ygy s £0; 1g¢
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(Game P : Oracle G(r) : N
(pk;sk) KG ¢(); if 9(s;h) 2 M :
L;M  nil; f(pk;skh r)=y then
y s f0;1¢5; bad; true
(mg;m1) A 1(pk); if r 62dom(L) then
B A a(y) g s fo 10 ;
L (ng):L
return L [r]
Oracle H(s):
if s62dom(M ) then
h s f0;1g ;
M (s;h):: M
return M [s]
\ Y

We now revert G to its original implementation and prove the following relational
invariant between Pz and P, which gives a necessary condition fobad ; to be set:

badihli =) (9r 2 dom(L);(s;h)2 M : f(pk;sk(h r))= y)hi
Thus,
Pr{Ps:badi] Pr[P4:9r 2 domL);(s;h)2 M :f(pk;sk(h r))=y] (6.12)

(Game Ps: Oracle G(r): h
(pk;sk) KG ¢ (; if r 62dom(L) then
L:M  nil; gs fo;1g¢
y s f0;19; L (rg):lL
(Mmo;m1) A 1(pk); return L [r]
oA 2(y) Oracle H(s):
if s62dom(M ) then
h s f0;1g ;
M (s;h) = M
L return M [s] )

We reallocate variablespk andy to local variables, and at the end of the game
compute x as the inverter in Figure [6.2 would do.
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(Game Ps : Oracle G(r): h
(pk;sk) KG £ (); if r 62dom(L) then
y ¢ f0;1g%; g s f0O1g¢ ;
L;M nil; L (ng) L
(mo;m1) A 1(pk); return L [r]
0 A ay); Oracle H(s):
if 9r 2 don'(L),(S, h) 2 M: if s GZjon'(M ) then
f(pk;skh r)=vy h s f0;1g :
thenx sk(h r) M (s:h):: M
\else x 0o return M [s] )

Compare this last game to gameGoyw in Figure B.2: both games semantically equiv-
alent once the call tol in Gow is inlined. Furthermore,

Pr[Ps:9r 2 dom(L);(s;h) 2 M : f(pk;sk(h r))=vy]
Pr Ps:x=f 1(sk;y) (6.13)
=Pr Gow:x=1f 1(sk;y)

From (617)) (613) we get
Pr[Gs:badi] Pr Gow:x=f I(sk;y) (6.14)

We are now left with the problem of bounding bad, in game Gg. De ne the
game Q parametrized by two instructions ¢; and ¢, as follows

(Game Q(c1; ) : Oracle G(r): h
(pk;sk) KG ¢ (); if r=nr"82domM )then
L;M nil; bad, true
rs 0,19 ;
8¢ f0;1g" Oracle H(s):
fisfoig; if s 62dom(M ) then
t ﬁ r; h s fo; 1g ;

(mo;m1) A 1(pk); if s= & bad, then
y f(pk;s$kt); bad,;bads true; ¢
B A 2(y) if s= §7: bad, then
bad, true; ¢
M (s;h) = M
return M [s]
. J

Flag bad 3 is set when$ is rst queried to H and G(r) has already been queried.
Flag bad 4 is set when$ is rst queried to H and G(f*) has not yet been queried.
Consider the games

Q ¥ Qh A ch  f)
Q ¥ Qth s fo;ig;h A)
Qs ¥ Q(h s f0;1lg;h s f0;1g)

o
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Using the fundamental lemma together with appropriate progam invariants, we

obtain

Pr(Gs:bad,] =Pr[Qy:
=Pr[Qz:
=Pr[Qz:
=Pr[Qz:
=0
=Pr[Qs:
=Pr[Qs:

bad ;]

bad ;]

bad,” bad4] + Pr[ Q- :

bad, " bad4] + Pr[ Qs :
+Pr[ Qs:

badgl\ bad4] + Pr[Qgi

bad ;]

bad, ":
bad, ":
bad, ":
bad, ":

(FL,
bad 4]
bad 4] (FL,
bad 4] (bad 4=):

bad 4] (bad4=):

bad )

bad 4)
bad 7)
bad 7)

We use optimistic sampling and the fact that f is a permutation to prove the

following equivalence:

rs f0;1g ; rs f0;1g ;
8 s f0;1gF & s fO;1g¢ ;
Aisfolg; it fOlg;
t A r t
y f(pk;skt) y f(pk;8kt)

rs 0,19 ;

I %l“;yg y s fo,]_gk,

In the next game, we apply the above equivalence and we revedraclesG and H
to the original random oracles,

(Game Qs : Oracle G(r): )
(pk;sk) KG ¢ (); if r 62dom(L ) then
L:M nil; g s f0;1g¢
y ¢ f0;10%; L (rg):L
(mo;m1) A 1(pk); return L [r]
0 A ay); Oracle H(s):
e 10,19 ; if s 62dom(M ) then
h s f0;1g ;
M (s;h) = M
L return M [s] )

If bad; is set to true in Qz then f must be in L, i.e. the following is a relational

invariant of Qs and Qg,

bad ,hli =)

(* 2 dom(L))r2i

and we can readily bound the probability of r being in the domain of L in Q4

because we know that the adversary makes at modig calls to G,

Pr[Gg : bad,] = Pr[ Qs : bad ;]

Putting (€10), (614) and (615) together,

Pr{Qg: 2 dom(L)]

(6.15)
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Pr(G; :bad] Pr Gow:x=f (skiy) + ;ﬁ (6.16)
Finally from (63} (€9)]and (6.186),
h i %
Pr Gmpcpa (b= > Pr Gow :x=f I(skjy) + > (6.17)
From which follows the bound (6.1). u
6.2 Indistinguishability under Chosen-Ciphertext Attack S

We use as a starting point the proof of_ Pointcheval [[2005], wkeh lIs several gaps
in the reduction of [Fujisaki et al.| [2004], resulting in a we&er security bound.
Our proof unveils minor glitches in the proof of|Paintcheval [2005] and marginally
improves on its exact security bound (reducing the coe cients) by performing an
aggressive analysis of oracle queries earlier in the sequenof games. The initial
and nal games of the reduction appear in Figure[6.3; the prod in CertiCryptis
about 10,000 lines long.

Theorem 6.4 (IND-CCA2 security of OAEP). Let A be an adversary against
the ciphertext indistinguishability of OAEP under an adaptive chosen-ciphertext
attack that makes at mostgs and g4 queries to the hash oracle$s and H, respec-
tively, and at most g queries to the decryption oracleD a SupposeA achieves an
advantage within time t during game Gnpcca. Then, there exists an inverter |
that nds a partial preimage (the k most signi cant bits of a preimage) of an
element uniformly drawn from the domain of f with probability © within time t°
during experiment Gppow, Where

o 1 3G+ B +4m+ G 2
CH 2 2k

t® t+ gs G o O(tr)

6.2.1 Proof Outline

Figure [6.4 outlines the structure of the proof; the rst step from Gnpcea t0 Gt
and the nal step from Gs to Gppow are not displayed. The reduction successively
eliminates all situations in which the plaintext extractor used by the inverter to
simulate decryption may fail.

Starting from game Gnpcca, We use the logic of swapping statements to x the
hash g that G gives in response to the random seed of the challenge ciphent; the
computation of the challenge ciphertext unfolds to:

! The machine-checked proof slightly relaxes this condition ; it requires that the length of
L ¢ be at most go + gg, SO that the adversary could trade queries to D for queries to G.
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(Game Giocca : Oracle G(r): Oracle D(c): h
Le;Ln;Lp nil; if r 62dom(L ¢) then Lo (€ger;C) i Lp;
(pk;sk) KG (); g s fO,1g" ; (si) f *(skio);
(mo;ma) A a(pk); Lec (ng)=Le | h H(s)

b s f0;1g; return Lg[r] r t h;
¢ E (mo); g G(r)
. Oracle H(s): : ok
Caer  trUE; if s 62dom(L ) then | T[S Gl =07 then
B A 2(€) h s fo;1g ; return [s  g]
Ly iS; h)’ <Ly else return?

L return L 4 [S] )
(Game Gepow : Oracle G(r): Oracle D(c): )
(pk;sk) KG ¢ (); if r 62dom(Lg) then | if 9(s;h) 2 Lu;(r;9) 2 Lg:

s s f0;1g¢ ; g s fo;1g¢ ; c=f(gk;sk(r h)~

t s f0;1g ; Le (ng):le [s gk, =0

s | (pkif (pk;skt))|| return Lglr] thenreturn[s g
Adversary | (pk;y): || Oracle H(s): else return?

Le;Ln nil; if s62dom(L ) then

ok pk; h s f01g ;

(mo;m1) A 1(pk): Lu  (s5h)Ly

B A oY) return Ly [s]

s $ dom(Lu);
\_return s Y,

Fig. 6.3. Initial and nal games in the reduction of the IND-CCA2 security of OAEP
to the problem of partially inverting the underlying permut ation. We exclude cheating
adversaries who query the decryption oracle with the challenge ciphertext during the
second phase of the experiment by requiring (true; ¢) 2 Lp to be a post-condition of the
initial game.

s f0;1g ;

§ g (mpk0<);
A H();

A T

¢ f(pk;8kf)

where ¢ is sampled fromf0;1g¢ before the rst call to A. We then make G
respond to an adversary query® with a freshly sampled value instead ofg; this only
makes a di erence if ag bad is set in gameG;. Since at this point § is uniformly
distributed and independent from the adversary's view, the value § computed as
g (mp k 0<) is as well uniformly distributed and independent from the adversary's
view. This removes the dependence of the adversary output othe hidden bit b,
and thus the probability of a correct guess is exactlyl=2. Using the Fundamental
Lemma we obtain the bound:
h i h i h [
Pr Gup-ccaz :b=b Pr G;: b=Db =Pr GinD-cca2 :b=b
Pr[G; : bad] (6.18)
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(Game G : Oracle G(r): Oracle D(c): )
Le;Lu;Lp nil; if r 62dom(L ) then |if (Egef® €=¢) _gp < jLpj_ dp + ge < jL | then

(pk;sk) KG () if r = P then return ?
r s f0;1g ; bad true; else
s % f0;1g¢ g $ fo;1g¢ Lo  (CgeriC) Lp;
(mo;my1) A 1(pk); Lelr]l g (sit) f (skic)
b $ f0;1g; elseg Lglr] r t H(s)
B H(9): return g g G(r) )
[ Oracle H(s): if [s glk, =0°tthenretun [s g] else return?
¢ f(pk;8kf); if s 62dom(L 1 ) then
Caet  true; h $ f0;1g ;
B A 2(¢) Luls] h
elseh Ly [s]
\_ return h )
. . qé + Op0c + db 0o Inline G and case analysis on s 2 dom(L 4
PriGi:bad] Pr[G,:bad]+ T2 7 2k |in D. Reject ciphertextsywith a fresh é or ?1
(Game G, : Oracle G(r): Oracle D(c): )
Le;Lu;Lp nil; if r 62dom(L g) then | if (€get™ € =€) _ 0o < jLpj_ go + gc < jLg]j then
(pk;sk) KG () if r = P then return ?
rSf0;1g ; bad true; else
s 8 fo;1g¢ g $ fo;1g¢ Lo  (Cgerc): Lp;
(moimi) A 1(pk); Lelll ¢ (sit) f (sk;c);
b $ f0;1g; elseg Lglr] if s2 dom(L ) then
A H (8); return g r t H(s);
t Ao Oracle H(s): i ;2 dl(_)m([l;ﬁ) LG
. . : clrl
gdef f (gﬁe’;g k i hs 6$2cioom(l;H,) then if [s glk; =0 k1 then return [s g] else return ?
B A 2(0) Luls] h N
elseh L [s] ifr=1n tht'e(n bad true;
return h g % f0;1g i Lglr] g return ?
else
r t  H(s)
if r2 dom(Lg)theng $ f0;1g ; Le[r] g
\_ return ? Y
o Eliminate assignmentsto Lg in D
Pr(Gy:bad] Pr{Gs:bad]+ ok1 Update D togenforce new bojnd on Lg
(Game Gs: Oracle G(r): Oracle D(c): )
Le;Lu;Lp nil; if r 62dom(L ¢ ) then | if (€gef® € =1¢C)_Op < jLpj_ Gc < JLg] then
(pk;sk) KG () if r = P then return ?
r s f0;1g ; bad true; else
§ 8 010" g s fo;1g¢ ; Lo (Ceeric): Lop;
(moimi1) A 1(pk); Lelrll ¢ (sit) f (skic)
b $ f0;1g; elseg Lgl[r] if s 2 dom(L ) then
A H (8); return g rot H(s)
t Ao Oracle H(s): i rgz dfm([l;](?) then
. . ; clrl;
gdef f (559:;9 k £ i hs iZcioor?(ngH;) then | if [s glk, =0 K1 then return [s g] else return ?
else
B A 2(€) ells_eHh[S] L h[S] if r = 1 then bad true;
return h " retwrn 2
else
9 r t  H(s); return ? )

Fig. 6.4. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.
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Op Gc + Ob Inline callsto H in D

PriGs:bad] Pr[G,:bad]+ 2 lEIiminate assignmentsto Ly in D
(Game Gy : Oracle G(r): Oracle D(c): N
Le;Lu;Lp nil; if r 62dom(L g ) then | if (€qef® € =¢C) _dpo < jLpj_ ds < jLg]j then
(pk;sk) KG () if r = P then return ?
r s f0;1g ; bad true; else
§ % f0;1g¢ g $ fo;1g¢ ; Lo  (Cgeric):Lp;
(mo;m1) A 1(pk) || Lelrl g (sit) f *(skjo);
b $ f0;1g; elseg Lg|r] if s2 dom(Ly ) then
A H (8); return g h Luls]; r t h;
¢ A A Oracle H (s): ifr2 dom([L]G) then
N . - ) g Lelrl
gu ’ f (5591.9 ke i hs ?ioom(l;'*_) then if [s glk; =0 K1 then return [s g] else return ?
© ’ B else
oA 2(6) ells_eHh[S] L h[S] if r = A then bad  true;
return h " retrn ?
\_ else return ? )
Eagerly sample the value of fi
. . ddc*+20 *+ s Introduce bad 4 in H
PriGs:bad] Pr[Gs:badu]+ 2 Bound bad in terms of bad y
(Game Gs : Oracle G(r): Oracle D(c): A
Le;Lu;Lp nil; if r 62dom(L g ) then | if (€gef® € =¢C) _ 0o < jLpj_ 0s < jLg] then
(pk;sk) KG () if r = P then return ?
r s f0;1g ; bad true; else
&8 fo;1g¢ g s fo;1g¢ Lb (CdeﬁlC) tLlp;
(mo;m1) A 1(pk); Lelr] 9 (sit) f “(sk;c);
b $ f0;1g; elseg Lglr] if s2 dom(L ) then
A s f0;1g ; return g h Lul[s]; r t h;
¢ Ao Oracle H(s): ifr2 dom([L]G) then
N . " ) g Lolrl
gu ; f (tprl:jé_s k£ i ifS S%dogl%e:) then if [s glk; =0 K1 then return [s g] else return ?
o : =
B A (6 bad true: else retu[)n?
h s fo;lg ; else return 7
Lu[s] h
elseh Ly [s]
_ return h )

Fig. 6.4. Outline of the reduction showing the lossy transitions. Fragments of code that
change between games are highlighted on a gray background.

The transition from G; to G, modi es the decryption oracle successively by inlining
the call to G, and by applying the Fundamental and Failure Event lemmas toreject
the ciphertext when there is a negligible chance it matcheshe padding. Overall,
we prove: ,

Pr[G::bad] Pr[G,:bad]+ q'?+q'32—qe+q'3+ STD (6.19)
Next, we eliminate fresh calls toG in the decryption oracle. These calls correspond
to the two assignmentsLg[r] g, since calls toG have been inlined previously.
We perform an aggressive elimination and remove both callsAs a result, in game
Gz the length of list L ¢ (i.e. the number of calls to G) is bounded by g rather than
Op + ge. This is the key to improve on the security bound of Pointcheal [2005], who
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only removes the second call. The proof relies on the logic ¢fwapping statements
to show that values of discarded calls are uniformly distrbuted and independent
from the adversary's view . Details appear below. Overall,we prove:

Pr[G; :bad] Pr[Gs:bad]+ STD (6.20)

Likewise, we eliminate calls toH in D, yielding a new gameG, in which the de-
cryption oracle does not add any new values to the memories d& and H. Using
the Fundamental and Failure Event lemmas, we obtain:

Pr[Gs:bad] Pr[Gs:bad]+ %ﬂb (6.21)

We next x the value fi that oracle H gives in response to8, and then make H

return a freshly sampled value instead ofi. This allows us to bound the probability

of bad in terms of the probability of a newly introduced event bady . The proof
uses the hypothesis thatA, cannot query the decryption oracle with the challenge
ciphertext, and yields:

DG *20h + G
2
Finally, we prove that the probability of bady in Gs is upper bounded by the

probability that the inverter | succeeds in partially inverting the permutation f .
The proof uses the (standard, non-relational) invariant on Gs:

Pr(Gs:bad] Pr[Gs:bady]+ (6.22)

bady =) 82 dom(Ly)

The inverter | that we build (shown in Figure B6.3) gives its own challengey as the
challenge ciphertext to the IND-CCA2adversary A and returns a random element
in the list of queries made toH . Thus,

Pr(Gs:bady] Pr[Gs:$2 domLy)] épr[GpDOW :s=13] (6.23)

Where the last inequality follows from the bound on the numbe of queries to oracle
H and an instance of the optimistic sampling equivalence:

~ . . v frg . .
fsfolg;ft A r fﬁ;wgf‘$f0,lg,ﬁ t r

Putting together (618) (6.23) concludes the proof of the gatement in Theorem[6.4.

Detailed proof of the transition from G, to Gz

We use the ve intermediate games shown in Figuré 65. The rg transition from G,
to G} consists in adding a tag to queries in the memory of5 indicating whether the
guery has been made directly by the adversary or indirectlythrough the decryption
oracle. The decryption oracle tests this tag when accessinpje memory of G: if the
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(G el Oracle G(r): Oracle D(c):
ame WG 1l 2dom(L c) then | if (6 ® 6= ©) b < jLoj_ d + do < JLa] then
(p(|;<" skH)’ KDG f 0_’ if r = P then return ?
(mo;mi) A 1(pk); bad | e L (s oo
b $ 0 1q: g ® f0;19° Lo (Cerc):Lp; (sit) f “(sk;c)
s fo. g; ) Lg[r] (falseqg) if s2 dom(L ) then
rs o lgk, else r t  H(s)
§ % f0;1g (d; g) Lgolr]; if r 2 dom(L g) then
i H(®); Lelr] (falseg) (dig) Lelr;
t A return g if d= true then
¢ f(pk;8kf); if [s glk, =02 then
. Oracle H(s): E S ——
Coer U, if s 2 dom((l_)H ) then bad 1  true; Jretun [s_ g] |
B A 2(¢) h s f0;1g ; else return ?
Lulsl h else 5
elseh Lu [s] if [ glk, =0%! thenreturn [s  g]
return h else return ?
else
if r = 1 then bad true;
g% f0;1g ; Lglr] (true;g); return ?
else
r t  H(s)
if r 62dom(L ¢ ) then
g% f0;1g ; Lg[r] (tue;g);
\ return ? /
(Game G312 : Oracle G(r): Oracle D(c): N
Lo-L _ZL-Z— fm- if r 62dom(L g) then | if (Gger™ €=¢) _dp < jLpj_ Go + ge < jLgj then
(p<I3< . S|:|)’ KDG f 0_’ if r = P then return ?
(mo;ma) A 1(pk); bad . tltue else ey e Liak - o)
b $ 10 10: g $ fo;1g Lo (CdersC) = Lp; (sit)  f “(sk;c);
s o Lolr] (falseq) if s2 dom(L ) then
r . fo; 19 else oot H(s)
$ % 10,1g° (d;g) Lglrl; if r 2 dom(Lg) then
N H(8); if d= true then (d;g) Lelrl
&t Ao FERTEC if d = true then return ?
e f(pk;skf); g else
Coer  true; g ® foi1g" | ) if [s glk, =0t then retun [s  g]
b A 2(6) La[r] (falseg); else return ?
'[ - _L_' ————— Y bad » P(g; I’) else
A If| return g if r = A then bad  true;
jwhile L 6 nil do I - '
| (r(big)  hd(L);[f Oracle H(s): g ® f0;19° ; Lglr] (tue;g); retun ?
1 if b= true then if s2 dom(Lu ) then else
I g s fo;1g* h s fo;1g ; rt H(s)
| Lolr]  (true;q), Ly [s] h if r 62dom(LE) then
L) || elseh  Lals] g ®f0;19° ; Lglr] (tue;g);
————————— return h return ? J
P(g;r) € o(dic)2 Lp:let (s;t)= f (sk;c)ins2dom(Ly) ~ r=t Ly [s] » [s 4k, =ok1

Fig. 6.5. Games in the transition from G; to Gs. Fragments of code inside a box appear
only in the game whose name is surrounded by the matching box.
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ciphertext queried is valid and its random seed appeared in grevious decryption

query, but not yet in a direct query to G, the decryption oracle raises a agbad;.

We show that this can happen with probability 2 ¥ for any single query, since the
random seed is uniformly distributed and independent from te adversary's view.
In this case, the decryption oracle can safely reject the cipertext, as done in game
G3. The proof proceeds in two steps: We show that gameS, is observationally
equivalent to game G} using the relational invariant

Lehli = (map( (r; (b;@):(r;g9)) Le)H2i

Therefore Pr[G, : bad] = Pr G} :bad . Game G} is identical to G}, except that
it rejects ciphertexts that raise the bad; ag. Applying the Fundamental Lemma
(i.e. Lemmal[333), we show that

Pr Gi:bad Pr Gi:bad +Pr G:bad;

Our next goal is to show that answers to queries tagged aue can be resam-
pled. However, one cannot apply the logic of swapping stateents at this stage to
resample these answers iiG, because agbad; is set onD and depends on them.
The solution is to introduce a new gameG; that sets another ag bad ; in the code
of G instead of setting bad ; in the decryption oracle?. Flag bad is raised when-
ever the adversary queriesc with the random seed of a valid ciphertext previously
submitted to the decryption oracle. We prove that gamesG3 and G} satisfy the
relational invariant:

bad.hli =) (bad,_ )i

where

L 9(d;g)2Lp:let(s;t)="f (sk;c); r=t Ly[s]in
r2domlLg)”s2domLy)”fst(Lg[r]) = false® [s  sndLg[r])]k, =0

Therefore:
Pr Go:bad +Pr Gi:bad; Pr G:bad +Pr G :bad,_

We now consider gameG3 where oracleG resamples the answers to queries previ-
ously sampled in the decryption oracle. As such answers areniformly distributed
and independent from the adversary's view, the logic for swpping statements can
be used to establish that this transformation preserves seamtics. Hence:

Pr G:bad +Pr G:bad,  =Pr Gy:bad +Pr G;:bad,

Note that in order to prove semantic equivalence we need to reample the values in
L ¢ associated to queries tagged asue made by the D at the end of the game.
Using Lemmal3.2, we upper bound the probability ofbad, _ in G3:

2 As bad: is not set anymore, we simplify the code of D by coalescing branches in the
innermost conditional.
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. &)

Pr Gg sbad, _ ki

We are now only interested in boundingbad, so we can remove as dead code the
fragment of code at the end ofGj that resamples values inL g, obtaining G5, and

prove that
Pr Gi:bad =Pr G :bad

We nally prove that game Gj is observationally equivalent to Gs, in which the
code for the oracleG is reverted to its original form and the decryption oracle no
longer tampers with the memory of G. Thus,

o 5)

Pr[G;:bad] Pr G :bad + %:Pr[eg:bad“ S

Comparison with the security bound of Paintchevall [2005]
Pointcheval obtains a slightly di erent bound:

o 1 4Ppds+20% +4m +8%6 3mp
OH 2 2k

We marginally improve on this bound by reducing the coe cients. As previously
mentioned, the improvement stems from the transition from G, to Gz, where we
eliminate both calls to G in the decryption oracle, whereas only one of them is
eliminated in [Pointcheval 2005]. In fact, eliminating both calls is not only needed
to give a better bound, but is essential for the correctness fothe proof. Indeed,
the transition from Gz to G4 would not be possible if D modied the memory
of G. Concretely, the justi cation of Equation (27) in [Rointch_eval|2005] contains
two minor glitches: rstly, the remark which just cancels r° from Lg oversees
the possibility of this removal having an impact on future queries. Secondly, the
probability for r®to be in Lg is less thangz=2 oversees that the length ofL g
is upper bounded by gz + o rather than just qg, as the decryption oracle still
adds values toL g; a correct bound for this probability in [Pointchevall 2005] is

(G + ®p)=2 .

6.2.2 Notes about the Proved Security Bound

We note that although we exhibit an explicit inverter that ac hieves the advantage in
the statement of Theorem[€.4, we do not prove formally that it executes within the
given time bound. We would be loath to say that the proof is inmmplete, because
the time complexity of the inverter is evident from its formu lation. Nonetheless,
we can prove that the inverter executes in probabilistic poynomial-time (under a
reasonable cost model for constructions in the language) ahthus the asymptotic
security of OAEP under the hypothesis that the underlying permutation family is
partial-domain one-way. Formally, if the winning probabil ity Pr[Gppow : S = 5] of
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any PPT inverter is negligible, we can prove that the advantage of any IND-CCA2
adversary is also negligible, providedk; and increase at least linearly with the
security parameter, i.e.,

9: 9,8 0 Nk

Moreover, we observe that by using a standard time-space tréde-o argument
(cf. [Pointcheval 2005]) one can reduce the factolgegup in the time bound of
the inverter to gg.

6.3 About the Security of OAEP in the Standard Model

From a practical point of view, in reductionist arguments like the ones we studied
in this chapter, the tightness of the security bound makes a vole world of dif-
ference. The tighter the bound is, the closer the problem of keaking the security
of the scheme is to the problem of solving the computational ard problem under
consideration. Another aspect of practical importance is he model where the proof
is carried out. A proof in the random oracle model, like the proofs we presented,
only rules out generic attacksthat do not exploit the implementation details of the
hash functions G and H. In contrast, a proof in the standard model of cryptogra-
phy considers the possibility that an adversary might be abk to exploit weaknesses
in the actual implementation of the hash functions to attack the security of the
scheme.

Several authors have studied the possibility of provingOAEP IND-CCA2secure
in the standard model, either when used in conjunction with the RSA function
or with a trapdoor permutation satisfying particular classes of properties. Shoup
[2001] showed the impossibility of nding a blackbox reducion from the IND-CCA2
security of OAEP to the one-wayness of the underlying trapdoor permutation,ei-
ther in the standard or random oracle model, but he exhibiteda blackbox reduction
in the random oracle model to the problem of partially inverting the permutation.
Brownl [2006] showed a pathological instantiation of the hab functions that would
render OAEP insecure, which means that a security proof should at least ssume
some property about the hash functions. He ruled out as wellle possibility of prov-
ing the IND-CCA2 security of OAEP in the standard model using certain types of
reductions. Finally, Kiltz. and Pietrzak [2009] prove a blackbox separation result: no
padding-based encryption scheme can be provedND-CCA2secure in the standard
model, even assuming the underlying trapdoor permutation $ ideal. This means
in particular, that is impossible to prove the IND-CCAZ2 security of OAEP in the
standard model under most standard assumptions about the tapdoor permutation,
including one-wayness, partial-domain one-wayness, or al-freeness.

In contrast, Kiltz_et al. [[2010] recently proved the IND-CPA security of generic
OAEPIn the standard model under non-interactive and non-interdependent assump-
tions on the underlying trapdoor permutation and the hash functions. In particular,
they prove that RSAOAEP is IND-CPA secure when instantiated using a-wise in-
dependent hash function (for an appopriatet) provided RSA is a lossy trapdoor
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permutation. This latter condition can be proved under the phi-hiding assumption,
a number-theoretic assumption slightly stronger than the RSA assumption.

Despite the above negative results, most people agree that security proof of a
scheme in the random oracle model gives strong evidence ahtaits practical secu-
rity, and that it is very unlikely that someone comes out with an attack exploiting
details of the concrete instantiations of random oracles.



Machine-Checked Formalization of
Zero-Knowledge Protocols

roofs of knowledge [Goldreichl 2002| Goldwasser et al. 1989] are daparty
P interactive protocols where one party, called theprover, convinces the other
one, called theverier, that it knows something Typically, both parties share a
common input x and something refers to a withessw of membership of the input
x to an NP language. Proofs of knowledge are useful to enforce honeselavior
of potentially malicious parties [Backes et al. 2009]: the kowledge witness acts as
an authentication token used to establish that the prover isa legitimate user of a
service provided by the veri er, or as evidence that a messag sent by the prover
has been generated in accordance to the rules of a protocol.réofs of knowledge
must be complete, so that a prover that has indeed knowledge foa witness can
convince a honest veri er, and sound, so that a dishonest preer has little chance
of being convincing. In addition, practical applications often require to preserve
secrecy or anonymity; in such cases the proof should not leaknything about the
witness. Zero-knowledge proofs are computationally convicing proofs of knowledge
that achieve this goal, i.e. they are convincing and yet the ‘eri er does not learn
anything from interacting with the prover beyond the fact th at the prover knows
a witness for their common input. This property has an elegah formulation: a
protocol is said to be zero-knowledge when transcripts of mtocol runs between a
prover P and a (possibly dishonest) verier V can be e ciently simulated without
ever interacting with the prover but with access to the strat egy ofV. In particular,
this implies that proofs are not transferable; a conversatbn is convincing only for
the veri er interacting with the prover and cannot be replay ed to convince a third
party.

In his PhD dissertation, Cramer [1996] introduced the concet of -protocols, a
class of three-move interactive protocols that are suitab¢ as a basis for the design of
many e cient and secure cryptographic services. Cramer desribed -protocols as
abstract modules and showed that they are realizable when stantiated for most

111
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computational assumptions commonly considered in cryptogaphy, including the
di culty of computing discrete logarithms or factoring int egers, or the existence of
some abstract function families (e.g. one-way group homonrphisms). In addition,
he gave an e ective method to combine -protocols to obtain zero-knowledge proofs
of any Boolean formula constructed using the AND and OR oper#ors from formulae
for which  -protocols exist. This means that -protocols can be used in a practical
setting as building blocks to achieve various cryptographt goals. Applications of -
protocols notably include secure multi-party computation, identi cation schemes,
secret-ballot electronic voting, and anonymous attestaton credentials.

This chapter reports on a fully machine-checked formalizaibn of a compre-
hensive theory of -protocols using CertiCrypt The formalization consists of more
than 10,000 lines ofCoqcode, and covers the basics of -protocols: de nitions, rela-
tions between di erent notions of security, general constuctions and composability
theorems. We show its applicability by formalizing severalwell-known protocols,
including the Schnorr, Guillou-Quisquater, Okamoto, and Feige-Fiat-Shamir pro-
tocols. The highlight of the formalization is a generic accant of -protocols,
that prove knowledge of a preimage under a group homomorphie . We use the
module system of Coqto de ne and relate the classes of - and -protocols.
Our formalization of ~ -protocols provides su cient conditions (the so-called spe-
cialness conditions) on the group homomorphism so that every  -protocol can
be construed as a -protocol. Moreover, we show that special homomorphisms
are closed under direct product, which yields a cheap way of ND-combining
proofs. We exploit the generality of our result to achieve slort proofs of complete-
ness, special soundness, and (honest veri er) zero-knowdge for many protocols in
the literature.

7.1 Sigma-Protocols

A -protocol is a 3-step interactive protocol where a proverP interacts with a

verier V. Both parties have access to a common inputx, and the goal of the
prover is to convince the veri er that it knows some value w suitably related to

X, without revealing anything beyond this assertion. The protocol begins with the

prover sending a commitmentr to the veri er, who responds by sending back a
random challengec; the prover then computes a response to the challenge and
sends it to the veri er, who either accepts or rejects the cowersation. Figure [Z.1
shows a diagram of a run of a -protocol.

Formally, a -protocol is de ned with respect to a knowledge relationR. This
terminology comes from interpreting the proof system as preing membership of
the common input to an NP languagelL. Each NP language admits an e cient
membership veri cation procedure via a polynomial-time recognizable relationR
such that

L=1fxjow: R_(x;w)g
Proving that x belongs to the language amounts to proving knowledge of a wikess
w related to x via R_. In CertiCrypt, the class of -protocols is formalized as a
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Prover Veri er
knows (x;w) knows only x
computes r - r .

«—C  choosesc
computes s - s accepts/rejects

Fig. 7.1. Characteristic 3-step interaction in a run of a  -protocol.

module type parametrized over a knowledge relatiorR , and a number of proce-
dures specifying the di erent phases of the prover and the va er; the module type
speci es as well the properties that any given protocol insance must satisfy. In the
remainder of this section we describe in detail our formal daition of  -protocols
and comment on an alternative but in some sense equivalent sp eci cation of the
zero-knowledge property.

De nition 7.1 ( -protocol). A -protocol for a knowledge relationR is a 3-step
protocol between a proveP and a verier V, whose interaction is described by the
following parametrized program:

Protocol (x;w) :
(r;state)  Pi(x;w);
c  Vi(x;r);

s Pa(x;w;state;c);
b Vax;r;c;s)

In the above program specifying a -protocol, the two phases of the prover are
described by the procedureP; and P,, while the phases of the veri er are described
by V1 and V.. Note that the protocol explicitly passes state between thghases of the
participants; we could have used instead global variables sbd betweenP; and P,
on one hand, andV; and V; on the other, but that would unnecessarily complicate
the proofs because we would need to specify that the proceelsirrepresenting one
party do not have access to the shared state of the other partyllAhe protocols that
we consider in the following arepublic-coin, meaning that a honest veri er chooses
the challenge uniformly from some prede ned seC. A  -protocol must satisfy the
following three properties,

1. Completeness: Given a public inputx together with a withessw such that
R(x;w), the prover is always able to convince the veri er:

8m: R(m(x); m(w)) =) Pr[Protocotm : b= true]=1

2. Special Honest Veri er Zero-Knowledge SHVZK): There exists a probabilistic
polynomial-time simulator Sthat givenx 2 dom(R) and a challengec, computes
triples (r; c;s) with the same distribution as a valid conversation. The propest
is formalized in terms of a version of the protocol where the chééngec is xed
as a parameter,
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Protocol (x;w;c) :

(r; state) PiOGwW); | fxcgr Roaw ) 4. .
s Pao(x;w;state; c); frcs g (ris) S(x;c)
b Va(xrics)

3. Special Soundness: Given two accepting conversatior{s, c1;s1), (r;c2;s2) for
an input x, with the same commitmentr, but with di erent challenges, there ex-
ists a PPT knowledge extractorKE that computes a witnessv such thatR(x; w).
Formally, for any memory m,

9
m(cl) 6 m(Cg) =

Prlb  Va(x;r;c1;s1);m:b=true]=1_ =)

Pr[b  Va(x;r;cz;S2);m: b= true]=1"

Priw  KE(X;r;c1;C2;81;S2);m : R(x;w)] =1

Special soundness might seem a relatively weak property atrst sight. It can
be shown using a rewinding argument (although we did not fornalize this result in
Cog) that thanks to special soundness, any public-coin -protocol with challenge
set C can be seen as groof of knowledgewith soundness errorjCj ! [Damgérd
and P tzmann 1998]. Informally, this means that any e cient prover (possibly
dishonest) that manages to convince a honest veri er for a pblic input x with
a probability greater than jCj ! can be turned into an e cient procedure that
computes a witness forx.

7.1.1 Relation between sHVZK and HVZK

Some authors require that -protocols satisfy a somewhat weaker property known
as honest veri er zero-knowledge rather than thespecial version of this property

mentioned above. The di erence is that in the former the simuator is allowed to

choose the challenge while in the latter the challenge is xd. In other words, plain

HVZK requires that there exists a PPT simulator S that given just x 2 dom(R)

computes a triple (r;c;s) with the same distribution as the verier's view of a

conversation. The relation between the two notions has beerstudied by |Cramer

[1996]. As an illustration of the use of CertiCrypt and the -protocol framework,

the formalization of this relation is discussed below. Without loss of generality we
assume that the challenge set of the protocols we consider i9; 1g*.

Theorem 7.2 (sHVZK implies HVZK). Ifa -protocol satis es sHVZK it also
satis es HVZK.

Proof. A HVZK simulator S° can be built from the sHVZK simulator S:
Simulator SYx): ¢ s f0;1¢%; (;s)  S(x;c); return (r;c;s)

The fact that S° perfectly simulates conversations of the protocol can be mved by
means of the following sequence of games:
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Protocolx; w) ' I:‘_S_ASZ(X;W) c s f0;1g%; Protocolx;w;c)
v FXgNR(X . - .
PR o 10,105 (nS)  S(x;0)

v FXgMR(X; A
e s0) (reis)  SAx)

The rst and last equivalences are easily proved by inliningprocedure calls using the
tactic inline , and reordering instructions in the resulting programs ushg swap To
prove the second equivalence, the tactieqobs_hdis used to get rid of the instruction
c s f0;1g¥ that is common to both games; the resulting goal matches exaly the
de nition of sHVZK for S. u

In a sense sHVZK s a stronger property than HVZK, because a protocol satisfy-
ing sHVZK can be shown to satisfyHVZK, while the converse is not generally true.
However, from every protocol(P; V) that satis es HVZK it is possible to construct
a protocol (P% V9 that satis es sHVZK and is nearly as e cient as the original
protocol:

PI(x; w) & (rstate)  Pi(x;w); & s £0;1g; return ((r;c9%; (state; c%))
PI(x;w; (state;c%);c) € s Py(x;w;state;c %) returns

VI(x; (r;c9) © ¢ vy(xr); return (¢ 9

V3(x; (r;¢%;c;9) € ph o oVyxire  ¢%s); return b

Essentially, the construction creates a new protocol for with HVZK and sHVZK
coincide. The di erence is that in the new protocol the challenge that the veri er
chooses is xor-ed with a random bitstring sampled by the proer at the beginning
of the protocol.

Theorem 7.3 (sHVZK from HVZK). If a protocol (P;V) is a -protocol as
in De nition 71 but satisfying HVZK instead of sHVZK, then the protocol (P% V9
de ned above is a -protocol.

Proof.
Completeness

Follows easily from the completeness of protocqlP; V) and the absorption property
of the exclusive or operator, i.e.,(c ¢ =c

Special Honest Veri er Zero-Knowledge
The following is a sSHVZK simulator for the protocol
Simulator SYx;c): (f; ¢;8)  S(x); return ((f;¢c  €);9)

(The variables of the original protocol are decorated with ahat.) We prove this by
means of a sequence of program equivalences,
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Protocof(x; w; c) 'If;;cc;sgAgR(x;W) Protoco(x;w); r (fc €):; s &
v Execgt R(x; . A- . .
(e RO (p69) S 1 (ke ©)
v Exeght R(x; . .
foag ) (ns)  Sxio)

The rst and last equivalences are proved without much di cu Ity using the program
transformation tactics described in Chapter[3, while the seond can be reduced to
the HVZK of S using the alloc and eqobs_tl tactics to simplify the goal.

Soundness

From a conversation ((r;c%;(c  9;s) of (P%V9 a conversation (r;c;s) of the
original protocol can be trivially recovered. Thus, the following knowledge extractor
proves special soundness qP% V9:

KE(x;r;c® ¢

KEO(X; (r;co); C1;C2;S1;S2) 1 W C2;S1;S2); returnw

7.2 Sigma Protocols Based on Special Homomorphisms

An important class of -protocols are the so-called -protocols, that prove knowl-
edge of a preimage under a homomorphism. The Schnorr protot{Schnorr|1991],
one of the most archetypal zero-knowledge proofs, is an inahce of a  -protocol
that proves knowledge of a discrete logarithm in a cyclic grap, i.e. the homo-
morphism is in this case exponentiation, (x) = g*, where g is a generator of the
group.

Our formalization of  -protocols is constructive. We provide a functor that,
given a homomorphism together with proofs that it satis es certain properties,
builds a concrete -protocol for proving knowledge of a preimage under . This
protocol comes with proofs of completeness, soundness, as#iVZK. Thus, all that
it takes to build an instance of a  -protocol is to specify a homomorphism and
prove that it has the necessary properties. In this way, we gie several examples
of  -protocols, including the Schnorr, Guillou-Quisquater ard Feige-Fiat-Shamir
protocols. Although using the construction spares us the hassle of proving each
time the properties in De nition T.I]these instantiations remain non-trivial because
one needs to formalize the homomorphisms themselves, whidh turn requires to
give representations of the groups over which they are de né.

In the remaining of this subsection we let(G; ) be a nite additive group and

(H; ) a multiplicative group.

De nition 7.4 ( -protocol). Let :G! H be a homomorphism, and de ne
R € f(x;w)jx= (w)g. The -protocol for relation R with challenge selC N
is the -protocol (P;V) de ned as follows:
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P1(x; w) 2y s G;retun ( (y);y)
Po(x;w;y;c) £ return(y cw)
Vi(x;r) € ¢ C; retunc
Vo(x;r;c;s) ¥ return( (s)=r  x°)

It can be shown that the above protocol satis es the properties of a -protocol when
C = f0; 1g. However, a cheating prover could convince the veri er with probability
1=2; this probability may be reduced to 1=2" (at the cost of e ciency) by repeating
the protocol n rounds. We will see that a certain class of homomorphisms dened
below admits a much larger challenge set, and thus achieveslawer soundness error
in a single execution of the protocol.

De nition 7.5 (Special homomorphism). An homomorphism :G! H is
special if there exists a valuev 2 Z n fOg (called special exponent and a PPT
algorithm that given x 2 H computesu 2 G such that (u) = xV.

To formalize  -protocols, we extended the language oCertiCrypt with types for
the groups G;H and operators for computing the group operation, exponent-
tion/product, and inverse; we also added operators (), u(), and a constant ex-
pressionv denoting the special exponent of the homomorphism as in De ition
In addition, we wrote an expression normalizer that simpli es arithmetic expres-
sions by applying the homomaorphic property of ; normalization is done as part of
the ep tactic.

A -protocol built from a special homomorphism admits as a chdkenge set
any natural interval of the form [0::c* ], wherec” is smaller than the smallest prime
divisor of the special exponentv.

Theorem 7.6 ( -protocols for special homomorphisms). If is special and
c' is smaller than any prime divisor of the special exponent, then the protocol in
De nition T4Js a  -protocol with challenge setC =[0::c" ].

Proof.

Completeness

We must prove that a honest prover always succeeds in conviireg a veri er, i.e.
8m: R(m(x); m(w)) =) Pr[Protocotm :b= true]=1

Note that this can be reformulated in terms of a program equivalence as follows

v R(x;w) b

f by true

Protocol(x; w)

To prove this, we inline all procedure calls in the protocol and simplify the re-
sulting program performing expression propagation, normézation, and dead code
elimination. We use the following proof script:

inline P1; inline Py; inline Vi; inline V,; ep; deadcode
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The resulting goal has the form
ysGics [0 b () W= () x) """ b tue

We use the tacticep_eqgx (w) to simplify the last instruction in the game on the
left hand side tob  true, tactic deadcodeto remove the rst two instructions that
are no longer relevant, andeqobs_in to conclude.

Protocol (x;w;c): Simulator (x;c) :
(r;state)  Pi(x;w); (;s)  S(x;c)
s Py(x;w;state;c);

b Vo(x;ric;s)

inline_|  Pg; e
inline | Py: @ sinline_r S
ep; deadcode
1 swap
7S oot o e
. | ’ Cc.
; (y)éw clean_nm; r O(SO) X
y apply sum_otp S S
v fxiwie gf R(xw )  fxwie gh R(xw )
frcis frcs
5 G 2 alloc r s%s; ® e 2
’ ep _eq rx (w); ’
y s%  cow; S\?vapq_ & r (s) (w) ¢
S Yy cw; .
eqobs_in
rooy R
L 0s G
@ e deadcode——|s s L—alloc r ss° ®
r (s (w) °

Fig. 7.2. A game-based proof that S is a sHVZK simulator for the -protocol in Theo-
rem[78.

Special Honest Veri er Zero-Knowledge
The following is a sSHVZK simulator for the protocol:
Simulator S(x;c): s ¢ G;r (s) x € return(r;c;s)

A proof that S perfectly simulates conversations of the protocol is illugrated in
Figure [Z2; we brie y explain the numbered steps in the gure.

1. Similarly to the proof above, we inline calls toP; and P, and simplify the goal
using tactics ep and deadcode
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2. We introduce an intermediate game using the transitivity of observational equiv-
alence. To prove that the new game is observationally equivent to the previous
one, we rstreorder the instructions using swapto obtain a common su x which
we then remove using the tacticeqobs_tl . The resulting goal is

Ty s G RREREWI s Gy s ow
Since variablesw and c are not modi ed, we can remove them from the output
set using tactic clean_nm. We next use tactic alloc y s° to sample s° instead
of y in the game on the left, and we weaken the pre-condition totrue, which
results in the goal

O cw

"% Gy 8% e Gly s
This equivalence holds because cw acts as a one-time pad; we have proved
this as a lemma calledsum_otpthat we apply to conclude the proof.

3. Using ep, we propagate throughout the code the value assigned tg and then
remove the assignment usingdeadcode The expression normalizer automati-
cally simplies (s° cw) cwtos’ and (s° cw)to (s9 (w) € using
the homomorphic property of

4. We introduce a new intermediate game; to prove that is equialent to the pre-
vious one, we allocate variables into s% the resulting game is identical to the
one on the left hand side.

5. We substitute variable s for s in the game on the right hand side of the equiv-
alence, and use the pre-conditiorR(x; w) which boils downto x = (w)to
substitute x by (w). The resulting games are identical modulo reordering of
instructions.

6. We conclude by inlining the call to S in the simulation.

Soundness

Soundness requires the existence of an algorithidE that given two accepting con-
versations(x;r;cq1;S1), (X;r;C2;S2), with ¢; 6 c,, e ciently computes a w such that
x = (w). We propose the following knowledge extractor:

KE(X;C1;C2;81;S2) :

(a;b;d  extended gcd(ci c2;V);
w  a(s: s2) b u(x);
return w

where extended gcd e ciently implements the extended Euclidean algorithm. Fo r
integers a; b, extended gcda; b computes a triple of integers(x;y; d) such that d
is the greatest common divisor ofa and b, and x;y satisfy the Bézout's identity

ax+ by=gcd(a;b=d

Since all computations done by the knowledge extractor can & e ciently imple-
mented, KE is a PPT algorithm. We have to prove as well that KE computes a
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preimage of the public input x. For two accepting conversations(x;r;c1;s;) and
(x;r;c2;82), we have

(s1)=r1r X%~ (sp)=71 X

and thus
X 2= (s Sp) (7.1)

Furthermore, since is special we can e ciently compute u such that x¥ = (u).
The triple (a;b;d given by the extended Euclidean algorithm satis es the Bézat's
identity

a(c; ¢)+ bv=ged(c; cv)=d (7.2)

Both c; and c; are bounded byc*, which is in turn smaller than the smallest prime
that divides v. Thus, no divisor of jc;  ¢pj can divide v and
d=gcd(ca cv)=1

In addition, since is a homomorphism, from [Z.1) and [Z2) we conclude

(W) = (a(S]_ 52) bu) = Xa(cl c2) va = x

7.2.1 Concrete Instances of Sigma-Phi Protocols

We have formalized several -protocols using the functor described in the pre-
vious section. For each protocol, we specify the group&;H and the underlying
special homomorphism :G! H, and provide appropriate interpretations for the
operator u( ) and the constant special exponentv. Table [T summarizes all the
protocols that we have formalized.

Table 7.1. Special homomorphisms in selected  -protocols. In the table, Z3 stands for
the additive group of integers modulo g, Z, for the multiplicative group of integers modulo
p; N is an RSA modulus and e a public RSA exponent coprime with * (N).

Protocol G H u %
Schnorr Zq Z, |[x7' g X710 q
Okamoto (Zg:Z4) Zp | (x1;%2) 70 git gp? | x 7! (0;0) | q
Fiat-Shamir Zy Zy | x 7! %2 X 7! X 2
Guillou-Quisquater Zy Zy | x 7' x® X 7! x e
Feige-Fiat-Shamir |f 1;1g Zy | Zy | (5;X) 7! sX? x 7! (1;x) | 2

The |Schnori [1991] andl Okamoto [[1993] protocols are based dahe discrete
logarithm problem. For prime numbers p and g such that q dividesp 1, a Schnorr
group is a multiplicative subgroup of Z,, of order g with generator g. A -protocol
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for proving knowledge of discrete logarithms in the Schnorrgroup is obtained by
instantiating the construction of De nition 7.4 With the ho momorphism
: ng 4
(x)=g9

p

Since the orderq of the Schnorr group is known, it su ces to take g as the special
exponent of the homomorphism, andu(x) = 0 forall x 2 Z; . The Okamoto protocol
is similar to Schnorr protocol but it works with two Schnorr s ubgroups of Z, with

generatorsg; and g, respectively (it can be naturally generalized to any numbe

of generators). In this case maps a pair (x1;X2) to gy*  g32.

Let N be an RSA modulus with prime factorsp and g, and let e be a public
exponent; e must be co-prime with the totient ' =(p 1)(q 1) (i.e. gcd(e;' (N)) =
1). The_Guillou-Quisquater [Guillou and Ouisauater 1988], Hat-Shamir [Fiat and
Shamir[1987], and Feige-Fiat-Shamir|[Feige et al. 1988] ptocols are based on the
di culty of solving the RSA problem: given N, eandy x® mod N, compute X,
the € -root of y modulo N.

The Guillou-Quisquater protocol is obtained by taking

D Zy ! Zy
(x) = x®

The Fiat-Shamir protocol is obtained as a special case whea= 2. The Feige-Fiat-
Shamir is obtained by taking

f Llg Zy! Zy
(s;x) = sx?

Remark

We note that our results hold independently of any computational assumption.
Certainly, it is the di culty of inverting the underlying ho momorphism what makes
a  -protocol interesting, but this is inessential for establishing the properties we
prove about the protocol.

7.2.2 Composition of Sigma-Phi Protocols

Let ;:G;! Hpand ,:Gy! H; be two special homomorphisms with special
exponentsvy; v, and associated algorithmsuy; u,, respectively. We give below two
useful ways of combining the  -protocols induced by these homomorphisms.

Theorem 7.7 (Direct product of special homomorphisms). The following
homomorphism from the direct product of G; and G, to the direct product of H1
and H is a special homomorphism:

Gy Gy! Hi H»
(X1;%2) £ ( 1(x1); 2(x2))
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Proof. It su ces to take

v £ lem(vy; Vo)

u(x1;x2) £ (U1(x1)"7; ua(x2)V™?)

Indeed,
(Uxaix2)) = ( 2(Ua(x2)"™); 2(U2(x2)"™?))

- (X\]/-1V=V1 . X\£2V=V2)
= (X1;%2)"

u
This yields an e ective means of AND-combining assertions poved by -
protocols. The result generalizes the protocol of Maurer [209, Theorem 6.2]; we do
not require that the special exponent be the same.

Theorem 7.8 (Equality of preimages). Suppose that the domain of both homo-
morphisms is the same,G; = G, = G, v1 = vy, and us; up are such that

8x1 2 Hy; X2 2 Hoi ug(X1) = ua(x2)

Then, the following homomorphism fromG to the direct product of H; and H» is
a special homomorphism:

: G! Hy H»
(x) € (1(x); 2(x)
Proof. Take v £ v; and u(x1;x2) £ ui(X1),
(U(X1;x2)) = ( 1(us(x1)); 2(u2(x2)))
= (x4 x5)
= (X1, %x2)Y
u

We can use this latter theorem to construct a -protocol that proves correctness
of Di e-Hellman keys. Given a group with prime order g and a generatorg, this

amounts to prove that triples of group elements of the form(; ; ) are Die-
Hellman triples, i.e. thatif = g® and = ¢°, then = g®. We instantiate the
above construction for homomorphisms ;(x) = g%, and ,(x) = *. Knowledge
of a preimagea of (; ) implies that (; ; ) is a Die-Hellman triple (and thus

that is a valid Di e-Hellman shared key).

7.3 Sigma Protocols Based on Claw-Free Permutations

This section describes a general construction in the same r as the con-
struction discussed in the previous section, but based on pes of claw-free permu-
tations [Cramer 11996] rather than on special homomorphisms
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De nition 7.9 (Claw-free permutation pair). A pair of trapdoor permutations
f =(fo;f1) onthe same domairD is claw-free if it is unfeasible to computex;y 2 D
such thatfo(x; pk) = f1(y; pk).

Given a claw-free permutation pair f , and a bitstring a 2 f 0; 1g¢, we de ne
frag(®) € fa,(fa, (2 (Fa () 1))
where a; denotes thei bit of a.

Theorem 7.10 ( -protocol based on claw-free permutations). Let (fo;f1)
be a pair of claw-free permutations onD and let R be such that

R(pk;sk) ( 8 x: gy (skifo(pk;x))= x ~ f, *(sk;f1(pk;x)) = x
The following protocol is a -protocol for relation R:

P1(pk; sk) £y s D; return (y;y)
Po(pk;sk;y;0 £ returnf [Cll(sk; y)

Va1 (pk; r) € ¢ s f0;195; returnc
Vao(pk;rc;s) £ return fig(pk;s) = r

except that it might not satisfy the knowledge soundness perty.
Proof.
Completeness

The proof follows almost the same structure as the completesss proof for -
protocols. After inlining procedure calls in the protocol, we are left with the goal

b f[c](pk;f[c]l(Sk;y))z y ' be(;k;Sk) b true

We use the fact that the pair (pk;sk) is in R to prove that f[c](pk;f[cll(Sk;y)) =y
by induction on c.

Special Honest Veri er Zero-Knowledge
The following is a sHVZK simulator for the protocol,
Simulator S(pk;c): s s D; r  fg(pk;s); return(r;s)
To prove that
Protocolpk; sk; c) ' IEE;Z%AR(”";S") (rs)  S(pk;c)

we inline every procedure call in both games and perform exmgssion propagation
and dead code elimination, we are left with the following go&
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“rsDys fl(skin) IE';;ZK;CQ r fg(pk;s)

which is provable from the fact that f is a permutation pair. u

We observed that the above protocol does not necessarily safy the special
soundness property. Instead, it satis es a property known & collision intractability :
no e cient algorithm can nd two accepting conversations wi th di erent challenges
but same commitment (a collision) with non-negligible probability. Interactive proof
protocols that are complete, sHVZK but only satisfy collision intractability have
important applications as signature protocols.

Theorem 7.11. Itis unfeasible to nd a collision for the protocol in Theorem [Z.10.

Proof. By contradiction. Assume two accepting conversations(r;ci;s1), (r;C2; S2)
for a public input pk with ¢; 6 c;. We show that it is possible to e ciently compute
a claw (b; ) such that fo(b) = f1(b°). Since the two conversations are accepting,

fre,1(PK;s1) = fie,y(pkisz) = 1
The following algorithm computes a claw

nd _ claw(sy; C1;S2; C2) :
if headc;) = headc;)
then nd_ claw(tail(cy); s1; tail(c,); sp)
else if heaft;) =0
then(f il (c,)) (PK; S1); f prail (o) (PK; S2))
else(f jtail(c,) (PK; S2);  [tail () (PK; S1))

The algorithm executes in polynomial-time provided permutations fo and f; can
be evaluated in polynomial time, andc;; ¢, are polynomially bounded. For a poly-
nomially bounded challenge set, this contradicts the assumtion that (fg;f1) is
claw-free. 9]

7.4 Combination of Sigma-Protocols

There are two immediate, but essential, ways of combining v -protocols(P*; V1)
and (P?;V?) with knowledge relations Ry and R, respectively: AND-combination,
and OR-combination. The former allows a prover to prove knowedge of withesses
wy; Wy such that Ry(x1;wp) and Ra(X2;wp). The latter allows a prover to prove
knowledge of a witnessw such that either R1(x1;w) or Ry(X2;w), without reveal-
ing which is the case. This can be naturally extended to procaf of any monotone
Boolean formula by nested combination (although there exisa direct, more e cient
construction based on secret-sharing schemes, cf. [Cram&896]). Even though sim-
ple, such constructions are incredibly powerful and form the basis of many practical
protocols, like secure electronic voting protocols.
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7.4.1 AND-Combination

Two  -protocols can be combined into a -protocol that proves simultaneous
knowledge of witnesses for both underlying knowledge relans, i.e. a -protocol
with a knowledge relation:

R f((X1;X2); (We;W2)) | Ra(x1;wi) N Ra(X2; W2)g

We have formalized a functor AND, that combines two public-coin  -protocols
(P V1) and (P?;V?) in this form. Without loss of generality, we assume that
both protocols mandate that honest veri ers choose challeges uniformly from a
set of bitstrings of a certain length k. The construction is straightforward; the
combination is essentially a parallel composition of the tvo sub-protocols using the
same randomly chosen challenge:

P1((X1;X2); (W1;wz)) &

(ri;stater)  Pi(X1;wi);

(r2;states)  P2(x2;w2);

return ((r1;r2); (states; statez))
Pa((X1;X2); (W1; Wy); state; statep;c) &

s1 P3(xi;ws;states;c);

S;  P3(x2;wy;states; c);

return (s1;S2)
Vi((x1;X2);(r1;r2)) € ¢ s £0;1g"; returnc
Va((X1;X2); (r1;r2); C; (S1;82)) &

by V3(X1;r1;C;s1)

ke V3(xz2;r2;C;sz)

return (b = true ® by = true)

Observe that V; is not built from Vi and V2. The reason for this is that in order to
prove soundness, two runs of the protocol for the same publimput x with the same
commitment r, but with di erent challenges ¢ 6 ¢, must yield two runs of each
of the sub-protocols with distinct challenges. If the chalenge for the main protocol
were built from the challenges computed byV} and V2, e.g. by concatenating them,
we would not be able to conclude that the challenges in each paof conversations
extracted for the sub-protocols are dierentone could only conclude that this
is the case for one of the sub-protocols. Instead, we make usé the public-coin
property and simply draw in V; a new random challenge that is used in both sub-
protocols. This solves the above problem, but also requirethat the sub-protocols
satisfy the special honest veri er zero-knowledge propest, since we need to be able
to simulate the sub-protocols for any xed challenge.

Since AND combination essentially amounts to pairing the two sub-protocols
while respecting the structure of a -protocol, all proofs have the same general form:
procedure calls are rst inlined, and then the goal is manipdated using program
transformations to put it in a form where the properties of th e sub-protocols can be
applied to conclude. We give below a proof sketch o§HVZK and special soundness;
a more detailed proof of these properties and a proof of compteness can be found
in [Barthe et al.| 2010b].
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Special Honest-Veri er Zero-Knowledge

The sHVZK simulator for the protocol simply runs the simulators of the sub-
protocols to obtain a conversation for each sub-protocol vith the same challengec,
the conversations are then combined to obtain a conversatio of the main protocol:

Simulator  S((X1;X2);€) :
(ri;s1)  Si(xasce);
(rz2;s2)  So(xz;0);
return((r1;r2); (s1;s2))

Soundness

Soundness requires us to give a PPT knowledge extractor thatomputes a witness
for the knowledge relationR from two accepting runs of the protocol with di erent
challenges but the same commitment. This amounts to computig a witness for each
of the sub-protocols and can be done using the correspondidgiowledge extractors
as follows:

KE((X1;X2); (r1;12); C; &% (51;52); (53; 89)) :
wi  KEY(xa;ri;c;c%sg;sd);

Wy KE?(X2;r2;¢;¢% s2;89);

return (wy; wz)

Note that an accepting conversation of the main protocol yiéds an accepting conver-
sation for each one of the sub-protocols. Moreover, since éhchallenge of the main
protocol is used as the challenge in both sub-protocols and 6 c°, the extracted
conversations have di erent challenges. Concretely, from

Prib  Va((x1;X%2);(r1;r2);c ;(s1;82));m : b= true] =1
Prib  Va((X1;%2);(r1;r2);c%(s2;s3));m : b= true] = 1

we can prove that fori =1;2,
Prow, KE(xi;ri;c;@si;s);m:Ri(xi;w) =1
from the soundness of the sub-protocols and from the fact thia

Prb  Vh(xi;ri;c;s)im:h = true =1
Pr b L(xi;ri;c%sd);m:b = true =1

7.4.2 OR-Combination

Two -protocols can also be combined to obtain a protocol that prees knowledge
of a witness for the knowledge relation of one of the sub-pratcols, but without

revealing which. The construction relies on the ability to smulate accepting runs;
the basic idea is that the prover runs the real protocol for which it knows a witness,
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and uses the simulator to generate a run of the other protocol The knowledge
relation suggested by, e.g. Damgard [2010],

R € f((x1:X2);W) j Ri(X1;W) _ Ra(X2;W)g

su ers from placing unrealistic demands on the simulator. As pointed out by|Cramer
[1996], it is important to allow the simulator to fail on an in put x 62dom(R). How-
ever, in order to prove completeness for the above relationthe simulator must be
able to perfectly simulate outside the domain of the respedve knowledge relation.
Instead, we can prove completeness (andHVZK) of the combination with respect
to a knowledge relation whose domain is restricted to the Catesian product of the
domains of the knowledge relations of the sub-protocols, é.

et ey (Ri(X;w) A x2 2 dom(Rz)) _
R= (Gaixiw) (Ra(x2;w) "~ x1 2 dom(R1))
Unfortunately, we cannot prove soundness with respect tdR, we can only prove it
with respect to R. The reason for this is that an accepting run of the combined
protocol only guarantees the existence of a witness for the yblic input of one of
the protocols, the simulation of the other protocol may suceed even if the input
is not in the domain of the respective relation. Otherwise sal, from two accepting
runs of the combined protocol with distinct challenges we mght not be able to
extract two accepting runs with distinct challenges for eat of the sub-protocols;
we can only guarantee we can do that for one of them. Observe #t we do not
really lose anything by proving completeness with respectd the smaller relation
R. If we admitted pairs (X1;X2) as public input where one component does not
belong to the domain of the corresponding knowledge relatio, we would not be
able to say anything about the success of the simulator. The imulator might as
well fail, trivially revealing that the prover could not hav e known a witness for the
corresponding input, and rendering the protocol pointlessfor such inputs.
Compared to the AND combination, the OR combination is harder to t into
the structure of a -protocol. The reason for this is that the rst phase of the
prover needs to use the simulator of one of the sub-protocaolsvhich results in a
full (accepting) conversation that has to be passed over to lte second phase of
the prover. Given Ry(x1;w), the OR prover runs the prover of the rst protocol
and the simulator of the second, and returns as a commitment gpair with the
commitments of each protocol; it passes over in the state thechallenge and the
reply of the simulated conversation,
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P1((x1;X2);w) &
if (x1;w) 2 Ry then
(ri;stater)  Pi(xi;w);
c2 s f0;1g";
(rz2;s2)  Sa(x2;c2);
state  (statei;cz;sz)
else
(ro;statez)  P2(x2;w);
¢ s £0;1g";
(ri;s1)  Si(x1;ci);
state  (statez; ci;S1)
return ((rq1;r2); state)

Above, the test (X1;w) 2 R; is an encoding of the fact that the prover knows to
which knowledge relation corresponds the witnessv, and thus which protocol it

can run for real, while simulating the other one. The commitment (ry;r;) is passed
along to the veri er that simply replies by returning a rando mly chosen bitstring

to the prover, the combination is a public-coin protocol,

Vi((X1:%2); (r1;r2)) & ¢ s £0;1g°; returnc

Assume without loss of generality that R1(X1;w). In the second phase the prover
constructs the challenge for the rst protocol by xor-ing th e challengec of the OR
protocol with the challenge used in the simulation of the seond protocol in the rst
phase. It then runs the second phase of the prover of the rst potocol to compute
a reply. The result of the second phase is constructed from th challenges for each
protocol and the prover replies (the ones coming from the simlated protocol are
recovered from the state):

P2((X1;X2); W; (state; ¢’ s);c) &
if (X1;w) 2 R1 then
state; state;c; sy s
C1 C2 C,

s1 P3(xi;w;states;c)
else
state, state; ¢ % sy s

C2 C1 C,
sz P(xz;w;states; c)
return ((¢1;s1); (C2; S2))

The veri er accepts a conversation when the runs of both probcols are accepting
and the challenge is the xor of the challenges used in each dfé combined protocols,
Va((x1;%2); (r1;r2); ¢ ((c1; 81); (G2 82))) &
by V3(X1;ri;Ci;s1);
b V3(x2;r2;C2;s2);
return(c=c G by = true”™ b = true)
Completeness
The proof is slightly more involved than the proof for the AND combination, since

only one of the protocols is run for real, while the other is jst simulated, and this
depends on the knowledge of the prover. Thus, the proof is splinto two cases:
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case (x1;w) 2 R;: the outline of the proof is as follows:

Protocol(x1;X2);w) ' Protocok (x1;w); ¢ s f0;1g%; (r2;s2)  Sp(X2;C2)
Protocoh (x1;w); Protocob(x2; w9

The rst equivalence is immediate from inlining procedure calls and simpli ca-
tion. The second equivalence follows from the fact that9w® R,(x.;w% and the
sHVZK property of the second protocol. The proof concludes by apptation of
the completeness property of each of the sub-protocols.

case (X2;w) 2 Ry: ldem.

Special Honest-Veri er Zero-Knowledge

The simulator for the OR combination is easily built from the simulators of the
sub-protocols:

Simulator  S((x1;X2);¢) :

c; ¢ fO;1dg;

C1 c Co;

(ri;s1)  Si(xa;c);

(rz;s2)  Se(xz;c2);

return ((r1;r2); ((C1;S1); (C2; S2)))

As before, the proof is split into two cases:

case (X1;w) 2 Ry:

Protocol(x1;X2);w) ' Protocok (x1;w); Sx(X2)
" Si(X1); Se(x2)
S((x1;%2);0)

Where the rst and last steps are immediate from inlining, and simpli cation,
whereas the second step is a direct application of thelVZK property of S; (which
follows from sHVZK by Theorem[7.2).

case (X2;w) 2 Ry: ldem.

Soundness

(With respect to R). Unlike the AND combination, the OR combination does not
have the property that runs with distinct challenges guarantee that the challenges
used in the sub-protocols are also distinct. This is not as psblematic as in the case
of the AND combination, since it su ces to compute a w such that either R1(x1; w)
or Ry(X2;w). Furthermore, from

c=ca 6d=d& o
we have eitherc; 6 ¢ or elsec; = ¢?, in which case necessarily, 6 ¢3. Thus, the
knowledge extractor simply needs to do a case analysis:
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KE((X1;X2); (r1;r2);c; ¢

((c1;51); (C2:52))5 (€5 89); (€9 89))) -
if c; 8 ¢} then

W KEYx1;r1;c;cl;si;s?)
else

W KE*(x2;r2;C2; 3; 52;89)
return w

Assume two accepting runs of the combined protocol with the ame commitment
andcé c*

((X1:%2); (r1;r2); ¢;((c1;81); (C2; 52)))

((xa3x2); (r1;12); €% (€3 8); (€25 52))

We have to establish that for ani 2 1;2,
Prw KE(x;ri;c;c%si;s): Ri(xi;w) =1
depending on whetherc; 6 ¢§ orc; = 97 ¢, 6 3,
case c; 6 ¢?: From the special soundness oProtocok,
Prow;  KEYxq;r;c156%;s1;89) t Ry(xq;wy) =1
case ¢; = ¢} (and thus c; 8 c3): From the special soundness oProtocob

Prow,  KE?(X2;r2;C;C0;82;99) : Ra(X2;Wa) =1

7.5 Related Work

Our work participates to an upsurge of interest in -protocols, and shares some
motivations and commonalities with recently published papers. Speci cally, our ac-
count of  -protocols coincides with Maurer's [20009] unifying treatment of proofs
of knowledge for preimages of group homomorphisms. Concrely, Maurer exhibits a
main protocol that uses a group homomorphism which in our set ting corresponds
to the de nition of the module of -protocols in Section[7.2 and shows (in his
Theorem 3) that under suitable hypotheses the main protocolis a -protocol. He
gives several instances of the main protocol by picking suétble group homomor-
phisms and showing that they satisfy these hypotheses.

Our work is also closely connected to the recent e ort of Bangrter et all [2008,
2010] to design and implement e cient zero-knowledge proa$ of knowledge. They
provide both a set of su cient conditions on a homomorphism  under which
the corresponding  -protocol can be viewed as a -protocol [Bangerter et all
2008,Theorem 1], and a generalization that allows to consigr sets of linear rela-
tions among preimages of group homomorphisms_[Bangerter edl. 2008, Theorem
2]. The latter result is used to justify the soundness of a corpiler that generates
e cient code from high-level descriptions of protocols. As future work, the authors
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of |Bangerter et all|2008] mention that they plan to make ther compiler certifying,
so that it would generate proofs accompanying the code. Doig so from scratch re-
mains a daunting task. By building on CertiCrypt, our formalization could be readily
used as a stepping stone for a modular certifying compiler,n which (high-level, un-
optimized) code is certi ed, and then compiled to e cient co de using a certi ed
or certifying compiler; see e.g./[Barthe et al! 2009b; Lero®006] for an instance of
applying ideas from certi ed/certifying compilation to cr yptography.

Cryptographic primitives need not only be secure; they mustalso be used cor-
rectly. In a_series of papers, Backes, Hritcu, and Ma €i [20@k]; Backes, Ma ei,
and Unruh [2008c¢] develop sound analysis methods for protots that use zero-
knowledge proofs, and apply their analyses to verify the autentication and secrecy
properties of the Direct Anonymous Attestation Protocol. O ne extremely ambitious
objective would be to use their results, which complement ots, to fully certify the
security of the protocol in the computational model. Intermediate results would
involve formalizing computational soundness results|[Abdi and Rogaway|2002;
Cortier and Warinschil 2005], which represents a substantibamount of work on its
own.

7.6 Perspectives

We have presented a formalization of -protocols in CertiCrypt The highlights
of our formalization are its generic account of the class of -protocols and the
detailed treatment of the AND/OR composition. Our work comp lements recent
advances in the eld, and takes a rst but important step towa rds formalizing a
rich theory of zero-knowledge proofs. In our opinion, and julging by the myriad of
small variations in de nitions we have found in the literatu re, this e ort would be
worth pursuing for a eld that strives for de nitional clari ty and consistency.

Compared to other applications of CertiCrypt, like the veri cation of security
proofs of encryption and sighature schemes discussed in pieus chapters, the
formalization presented here imposes challenges of a di ent nature to the user.
In contrast to earlier case studies, for which we have devefred a mature set of
techniques that mechanize most of the reasoning patterns gpearing in proofs, we
found that the formalization of -protocols does not require as much complex
reasoning, but is more demanding with respect to the compotibnality of proofs.
This led us to revise some design choices @ertiCryptand has given us ideas on how
to improve the framework so that results can be reused and coposed more easily.
For instance, when composing proofs of observational equidence statements the
user often needs to manually rename variables to match the nmaes of the context
where the proof is being reused; currently the user has to apgal to the alloc tactic
to do this, but a simply heuristic may su ce in most cases.

We can build on the existing formalization to verify other im portant results
about zero-knowledge proofs. These include other means obmposing protocols:
sequential [Goldreich and Oren 1994] and concurrent [Damgé 2000; Garay et al.



132 Chapter 7. Machine-Checked Formalization of ZK Protoco Is

2006] composition; transforming public-coin zero-knowldge proofs in general zero-
knowledge proofs [[Goldreich. 2002], or di erent formulations like non-interactive
zero-knowledge proofs [Blum et al. 1988] or properties, i.estatistical zero-knowledge
and computational zero-knowledge instead of perfect zer&nowledge. Moreover,

-protocols form the base for a number of important and intriguing protocols
for electronic voting schemes|[Cramer 1996], identity schraes [Cramer 1996], and
commitment schemes [Cramer 1996; Damgard 1990]. All are prie targets for future
formalizations.
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8.1 Related Work

Cryptographic protocol veri cation is an established area of formal methods, and
a wealth of automated and deductive methods have been devgbed to the purpose
of verifying that protocols provide the expected level of seurity [Meadows |2003].
Traditionally, protocols have been veri ed in a symbolic model, for which e ective
decision procedures exist under suitable hypotheses [Abadnd Cortier| 2006]. Al-
though the symbolic model assumes perfect cryptography, smdness results such
as [Abadi and Rogaway 2002] see [Cortier et all|2010] for a reent survey relate
the symbolic model with the computational model, provided the cryptographic
primitives satisfy adequate notions of security. It is possble to combine symbolic
methods and soundness proofs to achieve guarantees in thensputational model,
as done e.g. inl[Backes and Laud 2006; Backes et|al. 201.0; Smyer and Basin
2008]. One drawback of this approach is that the security prof relies on intri-
cate soundness proofs and hypotheses that unduly restrictte usage of primitives.
Besides, it is not clear whether computational soundness railts will always exist
to allow factoring veri cation through symbolic methods [B.ackes and P tzmann
2005]. Consequently, some authors attempt to provide guanatees directly at the
computational level [Blanchet|2008; Laud 2001; Roy et al. 208].

In contrast, the formal veri cation of cryptographic funct ionalities is an emerg-
ing trend. An early work of Barthe et al.|[2004] proves the searity of ElGamalin
Coq but the proof relies on the generic model, a very specialize and idealized
model that elides many of the issues that are relevant to crypography. Den Har-
tog|2008 also proveglGamalsemantic security using a probabilistic (non-relational)
Hoare logic. However, their formalism is not su ciently pow erful to express pre-
cisely security goals: notions such as well-formed and e ¢ive adversary are not
modeled.

Blanchet and Pointcheval [2006] were among the rst to use vé cation tools
to carry out game-based proofs of cryptographic schemes. By usedCryptoVerifto

133
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prove the existential unforgeability of the FDH signature scheme, with the original
security bound given in Section[5.1, which is much looser tha the one given in
Section[5.2.CryptoVerif has also been used to verify the security of many protocols,
including Kerberos [Blanchet et al.|2008]. It is di cult to a sses<LryptoVerif ability
to handle automatically more complex cryptographic proofs (or tighter security
bounds), e.g. for schemes such &SAEP, on the other hand, compiling CryptoVerif
sequences of games i€ertiCrypt is an interesting research direction that would
increase automation in CertiCrypt and con dence in CryptoVerifby generating
independently veri able proofs.

Impagliazzo and Kapron [2006] were the rst to develop a loge to reason about
indistinguishability. Their logic is built upon a more general logic whose soundness
relies on non-standard arithmetic; they show the correctnas of a pseudo-random
generator and that next-bit unpredictability implies pseu do-randomness. Recently,
Zhang [2009] developed a similar logic on top of Hofmann's SR system [Hofmann
1998] and reconstructed the examples of Impagliazzo and Kapn [2006]. These
logics have limited applicability because they lack suppot for oracles or adaptive
adversaries and so cannot capture many of the the standard pgerns for reason-
ing about cryptographic schemes. More recently Barthe et al[[2010a] developed a
general logic, called Computational Indistinguishability Logic (CIL), that captures
reasoning patterns that are common in provable security, sah as simulation and
reduction, and deals with oracles and adaptive adversariesThey use CIL to prove
the security of the Probabilistic Signature Scheme, a widel used signature scheme
that forms part of the PKCS standard [Bellare and Rogaway|19%]. CIL subsumes
an earlier logic by|Courant et all [2008], who developed a fan of strongest post-
condition calculus that can establish automatically asympotic security (IND-CPA
and IND-CCA2 of encryption schemes that use one-way functions and hastufc-
tions modeled as random oracles. They show soundness and pide a prototype
implementation that covers many examples in the literature.

In parallel, several authors have initiated formalizations of game-based proofs
in proof assistants and shown the security of basic examplesNowak [2007] gives
a game-based proof ofElGamalsemantic security in Cog Nowak uses a shallow
embedding to model games; his framework ignores complexifgsues and has limited
support for proof automation: because there is no special syax for writing games,
mechanizing syntactic transformations becomes very di cult. A eldt et al. [2007]
formalize a game-based proof of the PRP/PRF switching lemmain Cog However,
their formalization is tailored towards the particular exa mple they consider, which
substantially simpli es their task and hinders generality. They deal with a weak
(non-adaptive) adversary model and ignore complexity. In another attempt to build
a system supporting provable security, Backes et al. [200§dormalize a language for
games in thelsabelleproof assistant and prove the Fundamental Lemma; however,
no examples are reported. All in all, these works appear likpreliminary experiments
that are not likely to scale.

Leaving the realm of cryptography, CertiCrypt relies on diverse mathematical
concepts and theories that have been modeled for their own &a. We limit ourselves
to singling out Audebaud and Paulin-Mohring [2009] formalization of the measure
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monad, which we use extensively, and the work of Hurd et al. [205], who devel-
oped a mechanized theory in the HOL theorem prover for reasdng about pGCL
programs, a probabilistic extension of Dijkstra's guardedcommand language.

8.2 Conclusion

CertiCrypt is a fully formalized framework that supports machine-che&ed game-
based proofs; we have validated its design through formaling standard cryp-
tographic proofs. Our work shows that machine-checked profs of cryptographic
schemes are not only plausible but indeed feasible. Howevieronstructing machine-
checked proofs requires a high-level of expertise in formaroofs and remains time
consuming despite the high level of automation achieved. Tas, CertiCryptonly pro-
vides a rst step towards the completion of Halevi's program, in spite of the amount
of work invested so far (the project was initiated in June 20®). A medium-term
objective would be to develop a minimalist interface that eases the writing of games
and provides a xed set of mechanisms (tactics, proof-by-poting) to prove some
basic transitions, leaving the side conditions as hypothess. We believe that such
an interface would help cryptographers ensure that there ag& no obvious aws in
their de nitions and proofs, and to build sketches of securty proofs. In fact, it is
our experience that the type system and the automated tactis provide valuable
information in debugging proofs.

Numerous research directions remain to be explored. Our mai priority is to
improve proof automation. In particular, we expect that one can automate many
proofs in pRHL, by relying on a combination of standard veri cation tools: weakest
pre-condition generators, invariant inference tools, SMTsolvers.

In addition, it would be useful to formalize cryptographic meta-results such as
the equivalence betweeriND-CPA and IND-CCA2under plaintext awareness, or the
transformation of an IND-CPA-secure scheme into atND-CCAZ2secure scheme [Fu-
jisaki and Okamoto 1999]. Another direction would be to formalize proofs of com-
putational soundness of the symbolic model, see e.g. [Abadind Rogaway 2002]
and proofs of automated methods for proving security of prinitives and protocols,
see e.g. [Courant et al. 2008; Laud 2001]. Finally, it would Bo be worthwhile to
explore applications of CertiCrypt outside the realm cryptography, in particular to
randomized algorithms and complexity.

Complexity and termination analysis of probabilistic progams

CertiCrypt provides the necessary ingredients to reason about termirieon and com-
plexity of programs. Yet cryptographic applications only make a limited use of them;
e.g. we only use simple closure properties of PPT programst Would be instructive
to extend our formalization to de ne standard complexity cl asses and to prove the
complexity of well-known probabilistic algorithms. More generally, we are interested
in developing automated methods to carry such analyses for n@egrams with loops
and recursive calls.
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Reasoning about probabilistic programs

The pWhile language is su ciently powerful to program widely used randomized
algorithms, and it would be attractive to endow the formal semantics in Coqwith
a mechanized program logic that allows proving formally prgerties of these algo-
rithms, in the spirit of the work of Hurd et al. [2005].
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