
1 +'

&

$

%

Link Semantic Models

+ +



2 +'

&

$

%

Objective

To deal with various programming features in a uniform

way

• How to select proper observation type.

• How to link various observation spaces

• How to derive semantic functions

• How to ensure the model extension preserves algebraic

laws

+ +



3 +'

&

$

%

Assignment

1. sem1(x := e) = x′ = e

2. sem2(x := e) = D(e) ⊢ (x′ = e)

where D(e) is true when evaluation of e terminates.

3. sem3(x := e) =

II � eflag �











(true ⊢ x′ = e ∧ ¬eflag′)

�D(e)�

(true ⊢ x′ = x ∧ eflag′)











where eflag is an error indicator

+ +



4 +'

&

$

%

Choice

1. sem1(x := e ⊓ x := f) = (x′ = e) ∨ (x′ = f)

2. sem2(x := e ⊓ x := f) =

(D(e) ∧ D(f)) ⊢ (x′ = e ∨ x′ = f)

3. sem3(x := e ⊓ x := f) =

II � eflag � true ⊢





















D(e) ∧ (x′ = e) ∧ ¬eflag′ ∨

D(f) ∧ (x′ = f) ∧ ¬eflag′ ∨

¬(D(e) ∨ D(f))∧

(x′ = x) ∧ eflag′





















+ +



5 +'

&

$

%

How to understand complicated languages

• Start with the core of a language

• Add to it, one at a time, a number of new features

that are required.

• Ideally, the properties of programs established in the

simpler theories of programming can remain valid in

the enriched ones.

+ +



6 +'

&

$

%

Toward a uniform treatment

• Select an observation space for the new feature

• Characterise the defining properties of new feature

• Link observation spaces by an enbedding mapping

• Derive the new semantic function by examining the

corresponding commuting equation

+ +



7 +'

&

$

%

Enriched Type

Let D1 be the family of relations over the base type S,

and sem1 a semantic function of the language L over the

domain D1. To introduce a new feature to L we

construct an enriched type

T =df extend(S)

and its link with the original type S

ρ : S ↔ T

+ +



8 +'

&

$

%

Commuting Diagram

The second step is to characterise the defining properties

of programs in the enriched domain D2. Such algebraic

laws, often called healthiness conditions, are only valid

for real programs.

Let D2 =df T ↔ T . The semantic function

sem2 : L → D2 is required to establish the commuting

diagram

ρ; sem2(P ) = sem1(P ); ρ

sem2(P ) is selected among the healthy solutions of the

equation

+ +



9 +'

&

$

%

Link

Let sem1 and sem2 be semantic functions of the

programming language. A link ∗ is required to be

1. a monotonic mapping

sem2(P ) = sem1(P )∗

2. a homomorphism,

(sem1(P ) op sem1(Q))∗ = sem2(P ) op sem2(Q)

+ +



10 +'

&

$

%

Existence of Solutions

Under which condition on the relation ρ, the linear

equation

ρ ; X = (sem1(P ); ρ)

Theorem

ρ;X = R has solutions if and only if ρ; (ρ\R) = R

where ρ\R denotes the weakest postspecification of ρ

with respect to R:

(ρ;X) ⇒ R if and only if X ⇒ ρ\R

+ +



11 +'

&

$

%

Proof

Proof ρ;X = R

implies X ⇒ ρ\R

implies (ρ;X) ⇒ (ρ; (ρ\R))

implies R ⇒ (ρ; (ρ\R))

implies ρ; (ρ\R) = R

+ +



12 +'

&

$

%

ρ; (ρ\R) = R?

Theorem If there exists Q such that ρ;Q;R = R, then

ρ; (ρ\R) = R

Proof (ρ;Q;R) = R

implies (Q;R) ⇒ (ρ\R)

implies ρ; (Q;R) ⇒ ρ; (ρ\R)

implies R ⇒ ρ; (ρ\R)

Corollary ∀R • ρ; (ρ\R) = R if and only if

ρ; (ρ\id) = id

+ +



13 +'

&

$

%

How to Calculate sem2(P )

Theorem

If ρ; (ρ\id) = id then

sem2(P ) = ρ\(sem1(P ); ρ) =

¬(ρ̆; true) ∨ (ρ̆; sem1(P ); ρ)

where ρ̆ denotes the converse of the relation ρ

+ +



14 +'

&

$

%

Distributivity

Theorem

If ρ; (ρ\idS) = idS, then

(1) ρ\(R1 ∨ R2) = (ρ\R1) ∨ (ρ\R2))

(2) ρ\((R1;R2); ρ) = (ρ\(R1; ρ)); (ρ\(R2; ρ))

+ +



15 +'

&

$

%

Equation (X;P ) = R

Theorem

X;P = R has solutions if and only if P̆ ;X = R̆ does so.

Theorem

The equation X;P = R has solutions if and only if

(R/P );P = R

where R/P denotes the weakest prespecification of P

with respect to R.

+ +



16 +'

&

$

%

Proof

Proof X;P = R has solutions

≡ P̆ ;X = R̆ has solutions

≡ P̆ ; (P̆\R̆) = R̆

≡ P̆ ;¬(P ;¬R̆) = R̆

≡ P̆ ;¬(¬R; P̆ )⌣ = R̆

≡ (R/P );P = R

+ +



17 +'

&

$

%

Solutions of (X;P ) = R

Theorem

If (id/P );P = id then

R/P = ¬(true; P̆ ) ∨ R; P̆

Theorem (Distributivity)

If (id/P );P = id, then

(1) (R1 � b(s) � R2)/P = (R1/P ) � b(s) � (R2/P )

(2) (R1 ∨ R2)/P = (R1/P ) ∨ (R2/P )

+ +



18 +'

&

$

%

Observation: State of Variables

Let S =df (V AR → V AL) be the base type. A program

can be modelled by a predicate which represents a binary

relation on S.

Program Meaning

x := e x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

skip x′ = x ∧ y′ = y ∧ ... ∧ z′ = z

P ⊓ Q P ∨ Q

P � b(x) � Q P ∧ b(x) ∨ ¬b(x) ∧ Q

P ;Q ∃m • (P [m/s′] ∧ Q[m/s])

+ +



19 +'

&

$

%

Termination

To specify non-termination behaviour we introduce a pair

of Boolean variables to denote the relevant observation:

1. ok records the observation that the program has been

started.

2. ok′ records the observation that the program has

terminated. When the program fails to terminate, the

value of ok′ is not determinable.

+ +



20 +'

&

$

%

Healthiness Conditions

1. P = (ok ⇒ P )

2. [P [false/ok′] ⇒ P [true/ok′]]

3. P = P ; (ok ⇒ ok′ ∧ x′ = x ∧ ..z′ = z)

Theorem

P is heathy iff it has the form Q ⊢ R

where Q ⊢ R =df (ok ∧ Q) ⇒ (ok′ ∧ R)

+ +



21 +'

&

$

%

Embedding ρ

We extend the base type S by adding the logical variable

ok

T1 =df S × ({ok} → Bool)

Define the embedding ρ from S to T1 by

ρ =df ok′ ∧ (x′ = x) ∧ ... ∧ (z′ = z)

+ +



22 +'

&

$

%

Enriched Observation

For any predicate P representing a binary relation on S,

we define its image P ∗ on the enriched domain T ↔ T as

the weakest healthy solution of the equation

ρ;X = P ; ρ

Theorem

ρ;X = P ; ρ has the weakest solution

P ∗ = true ⊢ P

+ +



23 +'

&

$

%

New Semantic Function

The new definition of primitive commands of our

programming language is given by the following table.

Program Meaning

skip true ⊢ (x′ = x ∧ ... ∧ z′ = z)

x := e true ⊢ (x′ = e ∧ ... ∧ z′ = z)

+ +



24 +'

&

$

%

∗ is a homomorphism

Theorem

(1) (P ;Q)∗ = P ∗;Q∗

(2) (P ∨ Q)∗ = P ∗ ∨ Q∗

(3) (P ∧ Q)∗ = P ∗ ∧ Q∗

(4) (P � b � Q)∗ = P ∗
� b � Q∗

+ +



25 +'

&

$

%

Reactive Paradigm

For reactive programming paradigms we are required to

distinguish a complete terminated computation from an

incomplete one that is suspended. The former is used to

specify the case where the program has finished its

execution, but the latter suggests that the program

cannot proceed further without an interaction with its

environment. For example, a synchronisation command

wait(v = 0)

can not be executed unless the value of v is set to zero,

perhaps by some other programs in its environment.

+ +



26 +'

&

$

%

Extended Type and Healthiness Condition

We introduce a Boolean variable wait into the type T1

T2 =df T1 × ({wait} → Bool)

The variable wait takes the value false if and only when

the program has completed its execution.

If a program Q is asked to start in a waiting state of its

predecessor, it leaves the state unchanged.

Q = II � wait � Q

where

II =df true ⊢ (wait′ = wait ∧ x′ = x ∧ .. ∧ z′ = z)

+ +



27 +'

&

$

%

Embedding Mapping

Define ρ =df true ⊢ (¬wait′ ∧ x′ = x ∧ .. ∧ z′ = z)

For any design d in the domain T1 ↔ T1, we define its

image d∗ in the extended domain T2 ↔ T2 as the

weakest healthy solution of the equation

ρ;X = d; ρ

Theorem

(1) (b ⊢ R)∗ = II � wait � (b ⊢ (R ∧ ¬wait′))

(2) ∗ is a homomorphism

+ +



28 +'

&

$

%

Communication

1. Extended type: T3 =df T1 × ({tr} → seq(A))

2. Healthiness conditions:

(1) P = P ∧ (tr ≤ tr′)

(2) P (tr, tr′) = P (ǫ, (tr′ − tr))

3. Embedding:

• ρ =df true ⊢ (tr′ = ǫ ∧ x′ = x ∧ ... ∧ z′ = z)

• (b ⊢ R)∗ = (b ⊢ (R ∧ tr = tr′)) ∧ (tr ≤ tr′)

4. ∗ is a homomorphism

+ +



29 +'

&

$

%

Exception

1. Extended type: T4 =df T1 × ({eflag} → Bool)

2. Healthiness conditions:

P = II � eflag � P

3. Embedding:

• ρ =df true ⊢ (¬efalg′ ∧ x′ = x ∧ ... ∧ z′ = z)

• (b ⊢ R)∗ = II � eflag � (b ⊢ (R ∧ ¬eflag′))

4. ∗ is a homomorphism

+ +



30 +'

&

$

%

Probability

1. Extended Type

T5 =df {prob : S → [0, 1] | Σs∈S prob(s) = 1}

2. Embedding

• ρ(ok, prob, ok′, s′) =df true ⊢ prob(s′) > 0

• (b ⊢ R)∗ = b ⊢ (prob′(R) = 1)

+ +



31 +'

&

$

%

Primitive Commands

The new definition of primitive commands is given by

calculation

Primitive command Meaning

skip true ⊢ prob′(s) = 1

x := e true ⊢ prob′(s[e/x]) = 1

+ +



32 +'

&

$

%

Distributivity

Theorem

(1) (d1 � b � d2)∗ = d1∗ � b � d2∗

(2) (d1 ∨ d2)∗ = d1∗ ∨ d2∗ ∨
∨

0<r<1
(d1∗‖Mr

d2∗)

(3) (d1; d2)∗ = d1∗ ; ↑ d2∗

where

(b1 ⊢ R1)‖Mr
(b2 ⊢ R2) =df

((b1 ∧ b2) ⊢ (R1(s, prob1′) ∧ R1(s, prob2′)) ; Mr

Mr =df true ⊢ (prob′ = r × prob1 + (1 − r) × prob2).

+ +



33 +'

&

$

%

Conclusion

In fact, there is a retraction to link the enriched model

with the old one, because there exists a mapping † such

that

(P ∗)† = P and (Q†)∗ ⊒ Q

• In the state-oriented development methods the

embedding ρ is designed to connect abstract data type

with its concrete representation.

• In model checking ρ is used for data abstraction by

dramatically reducing the size of state space.

+ +


