
Coalgebraic Expressions
Robert S. R. Myers

Department of Computing, Imperial College London
180 Queen’s Gate, South Kensington Campus, London SW7 2AZ, United Kingdom

rm606@doc.ic.ac.uk

Abstract

We show that certain fixpoint expressions used to describe finite Kripke polynomial coalgebras
can be seen as coalgebraic modal fixpoint formulae. Both the synthesis of a coalgebra from its ex-
pression and the ability to check behavioural equivalence follow from the same tableau construction.
There is an associated complete equational logic, analogous to Kleene algebra, which may now be
seen as an equational presentation of a fragment of the coalgebraic µ-calculus. These expressions
include the regular expressions, the free Kleene algebra with tests and fragments of CCS and Linear
Temporal Logic.

1 Introduction

Bonsangue, Rutten and Silva (henceforth BRS) have recently introduced certain fixpoint expressions to
describe finite Kripke polynomial coalgebras [2]. The Kripke polynomial functors (KPF) are those end-
ofunctors K on Set which are composed out of the identity functor, constant functors, the product and
coproduct functors, the function space functor with constant domain and the finitary powerset functor.
They also specify some side conditions, provided below. The Kripke polynomial coalgebras (KPC) are
the associated K-coalgebras i.e. functions γ : X → KX . A KPC is finite if its carrier set X is finite and
also non-empty, a pointed KPC (x,γ) is a KPC γ together with a particular state x ∈ X . Examples in-
clude deterministic automata, deterministic automata on guarded strings, stream coalgebras and labelled
transition systems.

To each KPF K they associate a set of fixpoint expressions ExprK , such that every expression φ ∈
ExprK induces a unique finite pointed K-coalgebra (sφ ,Autφ) where Autφ : Sφ → KSφ and the set Sφ can
be thought of as the subexpressions of φ . They then prove that:

Every finite pointed K-coalgebra (x,γ) has an expression φ ∈ExprK with (x,γ)≈ (sφ ,Autφ)

where we write (x,γ) ≈ (x,γ ′) to mean that x and x′ are behaviourally equivalent or bisimilar in the
coalgebraic sense [7]. This can be seen as a generalisation of the correspondence between finite deter-
ministic automata and the regular expressions, known as Kleene’s theorem. They have also constructed
a complete equational reasoning system ≡K , parametric in K. That is:

For all φ ,ψ ∈ ExprK , (sφ ,Autφ)≈ (sψ ,Autψ) if and only if φ ≡K ψ is derivable.

This is analogous to the completeness of Kleene algebra: two regular expressions denote the same regular
language iff their equality can be derived. Up until now, these expressions ExprK have been seen as
process algebraic, since one naturally assigns them an operational semantics. Here we show they can
be seen as formulae of the coalgebraic µ-calculus [6], which is the modal µ-calculus generalised to any
coalgebraic notion of transition. For every K there is an associated tableau algorithm TK which may be
used to decide satisfiability or dually validity of the respective coalgebraic modal fixpoint formulae. We
shall discuss the following new results:

1. Each φ ∈ ExprK is a satisfiable formula of the coalgebraic µ-calculus. The satisfying model one
obtains from TK is precisely the automaton Autφ .

61

mailto:rm606@doc.ic.ac.uk

Coalgebraic Expressions Myers

2. The equational logic≡K may be understood as an interesting equational presentation of a fragment
of the coalgebraic µ-calculus. Then completeness of the equational system ≡K as proved in [1]
may be seen as completeness of a fragment of the coalgebraic µ-calculus.

3. To each φ ∈ExprK there is a corresponding coalgebraic µ-calculus formula φ ′, such that (sφ ,Autφ)
and (sψ ,Autψ) are bisimilar iff φ ′↔ ψ ′ is valid. This can be decided using the tableau TK .

4. The regular expressions, the free Kleene algebra with tests and parts of CCS and LTL all arise as
fragments. We therefore obtain natural algorithms for both their synthesis and for the testing of
their behavioural equivalence in a purely generic manner.

When testing behavioural equivalence, the µ-calculus formulae we consider never contain interleav-
ing µs and νs, simplifying things considerably. Although we do not discuss complexity here, we expect
our generic decision procedure to yield e.g. PSPACE-complete algorithms for testing equivalence of
regular expressions and the free Kleene algebra with tests.

2 Kripke Polynomial Functors

The Kripke polynomial functors K : Set→ Set are inductively defined:

K ::= Id | B | K +K | K×K | KA |PωK

• Id : Set→ Set is the identity functor.

• B : Set→ Set is a constant functor such that the set B is finite. We also assume that B is a join-semilattice
with a bottom element. This means that B is equipped with a binary operation ∨ : B×B → B which is
associative, commutative and idempotent and also a constant ⊥∈ B with b∨⊥= b for all b ∈ B. This is the
assumption made by BRS and we shall see that it is very natural. In fact every finite join-semilattice with a
bottom element is also a lattice because it has all joins and hence all meets.

• + : Set2 → Set is defined X +Y = {(1,x) : x ∈ X} ∪ {(2,y) : y ∈ Y} ∪ {⊥,>} and if f : X → X ′ and
g : Y →Y ′ then f +g : X +Y → X ′+Y ′ is defined in the normal way, where additionally f +g(⊥) =⊥ and
f +g(>) =>. This abnormal definition may be understood as forcing the coproduct to be a functor on the
category of join-semilattices with bottom, see below.

• × : Set2 → Set is the standard Cartesian product functor.

• (−)A is the function space functor with constant finite domain A i.e. XA is the set of functions from A to X
and if f : X → Y then f A : XA → Y A is defined f A(α) = f ◦α .

• Pω is the finitary powerset functor with Pω X = {A⊆ X : A finite} and if f : X → Y then Pω f : Pω X →
PωY is the direct image of f , restricted to finite subsets of X .

Example 1. We consider four examples:

1. Let 2 = {0,1} denote the minimal Boolean lattice. Then DA = 2× IdA is the deterministic au-
tomata functor with label set A. DA-coalgebras γ : X → DAX are precisely deterministic au-
tomata: each γ may be understood as an output function outγ : X → 2 where outγ = π1 ◦ γ and
transition function transγ : X → XA where transγ = π2 ◦ γ .

2. Let Tests = {t1, . . . , tn} be a finite set, whose elements are thought of as tests. We may think of the
set BATests = PPTests as the free Boolean lattice over Tests. Then AGS = BATests× IdAtoms×A

is the automata on guarded strings functor with tests Tests, label set A and Atoms = PTests. The
AGS-coalgebras are precisely the deterministic automata on guarded strings [5], with parameters
Tests and A. Finally let outTests

γ = π1 ◦ γ and transTests
γ = π2 ◦ γ .

62

Coalgebraic Expressions Myers

3. Let Prop = {p1, . . . , pn} be some finite set of propositional variables and PropL = PProp be
the powerset lattice. Then we call Str = PropL × Id the PropL-stream functor. Str-coalgebras
are streams over the lattice PropL and the behaviour (i.e. corresponding element of the Str-final
coalgebra [7]) of every finite Str-coalgebra is the infinite word r(s)ω where r,s ∈PPropL

∗ and s
is not the empty word. Let headγ = π1 ◦ γ and tailγ = π2 ◦ γ .

4. Fix some finite set Act of actions, then LTS = (Pω Id)A is the labelled transition systems functor
and LTS-coalgebras are labelled transition systems.

Each KPF can also be understood as a functor on the category JSL⊥ of join-semilattices with bottom
and semilattice morphisms that preserve the bottom. Recall each join-semilattice (X ,∨X) has a natural
partial ordering x ≤X y ⇐⇒ x∨ y = y, the bottom is the least element with respect to this ordering. We
only provide their action on objects:

• The identity functor maps join-semilattices with bottom to themselves.

• The constant functor B maps to the particular join-semilattice with bottom B, by assumption.

• The coproduct (X +Y,∨+,⊥+) is defined (1,x)∨+ (2,y) = >+, (1,x)∨+ (1,x′) = (1,x∨X x′), (2,y)∨+
(2,y′) = (2,y∨Y y′). The element ⊥+ ∈ X +Y is required to be the bottom.

• (X ×Y,∨X×Y ,⊥X×Y) is defined ⊥X×Y = (⊥X ,⊥Y) and (x,y)∨X×Y (x′,y′) = (x∨X x′,y∨Y y′).

• (XA,∨XA ,⊥XA) is defined ⊥XA = λa.⊥X and f ∨XA g = λa.(f (a)∨X g(a)).

• (Pω X ,∨Pω X ,⊥Pω X) is defined ⊥Pω X = /0 and A∨Pω X B = A∪B.

• Functors are closed under composition, thus every KPF can be seen as an endofunctor on JSL⊥.

3 Generic Syntax

We now introduce the syntax used by BRS. It differs slightly in that we have used different labels for the
symbols and avoided using a type system. Syntactically we can view any KPF K as its parse tree. We
think of each node of the tree as being labelled by both the respective component functor C and also a
positive integer n, this being the step at which the node is visited in a depth-first left-child first search.
We denote the resulting tree TreeK , examples of the construction for DA and LTS are provided below.

× : 1
{{vvv

vv &&LLLL

2 : 2 (−)A : 3
��

Id : 4

(−)A : 1
��

Pω : 2
��

Id : 3

Definition 1. The expressions ExprK associated with a KPF K are defined in terms of collection of
interleaved grammars, using the structure of TreeK . Let s1, s2 be arbitrary subtrees of TreeK:

LId:1 3 φ ::=> | φ1∧φ2 LB:n 3 φ ::=> | φ1∧φ2 | [b] (b ∈ B)
Ls1+:ns2 3 φ ::=> | φ1∧φ2 | [e1]ψ1 | [e2]ψ2 Ls1×:ns2 3 φ ::=> | φ1∧φ2 | [π1]ψ1 | [π2]ψ2

(a ∈ A) L(s1)A:n 3 φ ::=> | φ2∧φ2 | 〈a〉ψ1 LPω :n(s1) 3 φ ::=> | φ2∧φ2 |3ψ1

where ψi ∈Lsi for i = 1,2. The expressions ExprK are the closed and guarded members of L ν
TreeK

:

L ν
TreeK

3 φ ::= LTreeK | x | νx.φ

moreover LId:n := L ν
TreeK

i f n > 1

63

Coalgebraic Expressions Myers

The language L ν
TreeK

is the minimal grammar containing LTreeK , all variables x from some countably
infinite set Var = {x1,x2, . . .} and closed under νx-prefixing. An expression is closed and guarded if
every variable x appears in the scope of some νx and variables are separated from their binders by some
modal operator ♥, in the usual way. Note that ExprK is inductively defined in terms of all the languages
Ls where s is a subtree of TreeK .

Example 2. 1. Expressions for finite deterministic automata where a ∈ A:

ExprDA 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]χ | x | νx.φ (φ closed and guarded)

L2:2 3 ψ ::=> | ψ1∧ψ2 | [0] | [1] L(Id:4)A:3 3 χ ::=> | χ1∧χ2 | 〈a〉φ

In terms of regular expressions, 0 = [π1][0] should be thought of as the empty language, 1 = [π1][1]
as the empty word ε and a.φ = [π2]〈a〉φ as prefixing by the letter a. Later we show the regular
expressions arise as a fragment. Using these abbreviations we obtain a single-sorted closed and
guarded fragment:

Expr1
DA 3 φ ::=> | φ1∧φ2 | 0 | 1 | a.φ | x | νx.φ

2. Expressions for finite deterministic automata on guarded strings where b ∈ BATests = PPTests,
A ∈ Atoms = PTests and a ∈ A:

ExprAGS 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]χ | x | νx.φ (φ closed and guarded)

LBATests:2 3 ψ ::=> | ψ1∧ψ2 | [b] L(Id:4)Atoms×A:3 3 χ ::=> | χ1∧χ2 | 〈(A,a)〉φ

Because BATests is the free Boolean algebra generated by Tests, instead of elements b∈BATests we
may instead use Prop(Tests), the propositional formulae β with variables in Tests. More explicitly
let σ : Prop(Tests)→BATests be the unique extension of the valuation σ(ti) = {A∈Atoms : ti ∈A}
for i = 1, . . . ,n. We define 〈β 〉= [π1][β] and [β → a]φ =

∧
A∈σ(β)[π2]〈(A,a)〉φ , so that a guarded

string [5] A1a1 . . .An−1anAn ∈ Atoms(A ·Atoms)∗ arises as the formula [A1 → a1] . . . [An−1 →
an]〈An〉. This yields the single-sorted closed and guarded fragment:

Expr1
AGS 3 φ ::=> | φ1∧φ2 | 〈β 〉 | [β → a]φ | x | νx.φ

3. Expressions for finite Str-coalgebras where P ∈ PropL i.e. P is a subset of Prop:

ExprStr 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]φ | x | νx.φ (φ closed and guarded)
LPropL:2 3 ψ :=> | ψ1∧ψ2 | [P]

We have the Next modality ©φ = [π2]φ and the Always modality 2φ = νx.(φ ∧©x) of LTL. Also
for P⊆ Prop let 〈P〉= [π1][P]. Again we have a single-sorted closed and guarded fragment:

Expr1
Str 3 φ ::=> | φ1∧φ2 | 〈P〉 | ©φ | x | νx.φ

4. Expressions for finite LTS-coalgebras where a ∈ Act:

ExprLTS 3 φ ::=> | φ1∧φ2 | 〈a〉ψ | x | νx.φ (φ closed and guarded)

LPω :2(Id:3) 3 ψ ::=> | ψ1∧ψ2 |3φ

For each a ∈ Act we let 〈a〉φ = 〈a〉3φ this being the standard relational diamond. Again we have
a single-sorted closed and guarded fragment:

Expr1
LTS 3 φ ::=> | φ1∧φ2 | 〈a〉φ | x | νx.φ

64

Coalgebraic Expressions Myers

The above languages are almost exactly the same as BRS’s syntax, to obtain their languages one may
bijectively relabel our symbols as follows:

>→θ /0 φ ∧ψ →θ φ +ψ νx.φ →θ µx.φ

[e1]φ →θ l[φ] [e2]φ →θ r[φ] [π1]φ →θ l(φ) [π2]φ →θ r(φ) 〈a〉φ →θ 〈a〉φ 3φ →θ {φ}

The top line is rather interesting:

• The join-semilattice structure + and /0 – familiar from the regular expressions – corresponds with conjunc-
tion and >. Indeed the latter also form a join-semilattice structure via propositional logical equivalence.

• Notice that to build an automaton for the regular expression r + s one must build automata for both r and s,
in this sense + is a conjunction.

• To understand why /0 corresponds with >, recall that the minimal deterministic automaton that accepts the
empty language is the single non-final state x where all transitions a ∈ A loop back into x. Then ask: what
is the minimal automaton which models the formula >? There are two models consisting of only one state:
one will accept the empty language while the other accepts its complement. In fact the former is the more
natural choice because it corresponds with the bottom element of the final DA-coalgebra, which inherits its
join-semilattice structure from the fact that DA is a functor on JSL⊥.

• Finally notice µ actually maps to ν . It is understandable that BRS decided to use µ because of the strong
analogy with the Kleene star, which is best thought of as a least fixpoint and is axiomatised as such in
Kleene algebra [4]. However, recall that finite deterministic automata require loops in order to accept
regular languages with stars, and loops – being infinite behaviours – are represented by νs not µs.

We chose the relabellings in the second line to emphasise that the various unary operators are modal
operators. In fact each of them is a well-known coalgebraic modal operator and the symbols we have
chosen for them are standard. The multisorted languages ExprK above and also the ‘glued together’
single-sorted language Expr1

K is actually a specific application of a general construction in coalgebraic
modal logic, where one builds the language and logic of composite functors out the languages and logics
of their components [8].

4 Generic Final Semantics

For each K, BRS inductively define a coalgebra λK : ExprK → K(ExprK) over the expressions, which
yields a finite pointed coalgebra or automaton (sφ ,Autφ) for each expression φ ∈ ExprK . In this sec-
tion we present an equivalent construction using tableau rules, whose meaning will be explained in the
following section. We proceed informally since we lack the space for a detailed account.

A sequent Γ for φ ∈ ExprK is a finite subset of either ExprK or Ls for some subtree s of TreeK . It
should be thought of as the conjunction of its elements. Note it must be a finite subset of a particular
component language: they may not be mixed. The following rules relate a single sequent (the premise)
to one or more sequents (the conclusions).

(∧)
{φ ∧ψ}∪Γ

{φ ,ψ}∪Γ
(ν)

{νx.φ}∪Γ

{φ [x := νx.φ]}∪Γ
(ei)

{[ei]φ1, . . . , [ei]φn}∪Γ

{φ1, . . . ,φn}
(3)

{3φ1, . . . ,3φn}∪Γ

{φ1} . . . {φn}

(π)
{[π1]φ1, . . . , [π1]φm, [π2]ψ1, . . . , [π2]ψn}∪Γ

{φ1, . . . ,φm} {ψ1, . . . ,ψn}
(〈a1 . . .am〉)

{〈a1〉φ 1
1 , . . . ,〈a1〉φ n1

1 , . . . ,〈am〉φ 1
m, . . . ,〈am〉φ nm

m }∪Γ

{φ 1
1 , . . . ,φ n1

1 } . . . {φ 1
m, . . . ,φ nm

m }

There are various conditions on how these rules are applied but we only provide them informally
here. Start with the single node or sequent {φ} and then apply a rule whose premise can be written as
{φ}, repeating this matching process on each of the rule’s conclusions. When choosing a rule to apply,

65

Coalgebraic Expressions Myers

the rules (∧) and (ν) take precedence over the others. When no rule may be applied or when we come
across a sequent we have already seen, we don’t match rules to that sequent. The repetition of a sequent
correspond with a loop in the automaton if the first occurrence of the sequent appears higher in the
derivation tree. Roughly speaking, the process terminates because there are only finitely many possible
sequents, namely the finite subsets of the subexpressions of φ .

Example 3. We provide three examples of tableau: >, a.1∧b.1 and a.νx.(1∧a.x) from Expr1
DA. Recall

that 1 := [π1][1] and a.φ := [π2][a]φ in ExprDA.

{>}
{[π2]〈a〉[π1][1]∧ [π2]〈b〉[π1][1]}

(∧)
{[π2]〈a〉[π1][1], [π2]〈b〉[π1][1]}

(π)
/0 {〈a〉[π1][1],〈b〉[π1][1]}

(〈ab〉)
{[π1][1]}

(π)
{[1]} /0

({[π1][1]})

{[π2]〈a〉(νx.([π1][1]∧ [π2]〈a〉x))} (π)
/0 {〈a〉(νx.([π1][1]∧ [π2]〈a〉x))} (〈a〉)

{νx.([π1][1]∧ [π2]〈a〉x)} (ν)
{[π1][1]∧ [π2]〈a〉νx.([π1][1]∧ [π2]〈a〉x)} (∧)
{[π1][1], [π2]〈a〉νx.([π1][1]∧ [π2]〈a〉x)} (π)
{[1]} ({〈a〉νx.([π1][1]∧ [π2]〈a〉x)})

Sequents are enclosed in brackets (·) if they already appear earlier in the construction.

Each expression φ yields a unique tableau which in turn completely determines the automaton
(sφ ,Autφ). Again we will not explicitly provide the process used to convert the tableau to an automa-
ton, although it is not complicated and is of course generic in K. Instead we provide the deterministic
automata correspondents of the tableaux above, where final states are enclosed in a double box and we
assume A = {a,b}:

{>} a,b
oo

{a.1∧b.1}a,b // {1} a,b // {>} a,b
oo

{a.νx.(1∧a.x)} a //

b **UUUUUUUUUUUU
{1,a.νx.(1∧a.x)}

a

��

b ��
{>} a,b

oo

Note that each automaton has a ‘sink-node’ {>}which corresponds with the empty-language. Notice
also that the right-most automaton has a loop on {1,a.νx.(1∧a.x)}, this corresponds with the duplication
of that same sequent in the tableau above and the fact that it occurred higher-up in the tableau. A
duplication also occurs in the middle tableau but because the original isn’t higher we don’t get a loop. In
fact these are automata for the regular expressions: /0, a+b and aa∗.

When BRS construct the automaton for an expression they first inductively define λK : ExprK →
K(ExprK) and then show how to construct an automaton from it: this requires checking for loops to
ensure termination. We have briefly outlined a method where one first constructs a tableau and then con-
verts it to an automaton. Their process can then be understood as converting the tableau to an automaton
as the tableau is being built i.e. it composes the two steps we have sketched. Thus the generalisation of
Kleene’s theorem follows:

Theorem 1. [1] For every finite pointed KPC (x,γ) with γ : X →KX there exists an expression φ ∈ExprK
with ({φ},Autφ} bisimilar to (x,γ)

Proof. Follows because the above automaton construction turns out to be equivalent to BRS’s and they
provide an algorithm which converts any finite pointed KPC into an expression φ satisfying the above
property. Alternatively it is possible to obtain the result in terms of join-semilattices with bottom and the
semantics presented in the next section.

66

Coalgebraic Expressions Myers

5 Generic Modal Semantics and Equational Logic
For each of our four example functors K ∈ {DA,AGS,Str,LTS} and any finite coalgebra γ : X → KX
we provide a semantics |=γ

K⊆ X×Expr1
K for the single-sorted language Expr1

K . In fact this is the glueing
together of a more general multisorted semantics. Also recall that for any join-semilattice (B,∨B) there
is a natural partial ordering x≤B y ⇐⇒ x∨B y = y.

x |=γ

K > always x |=γ

K φ1∧φ2 ⇐⇒ x |=γ

K φi f or i = 1,2
x |=γ

K νx.φ ⇐⇒ ∀n ∈ ω.x |=γ

K φ [x := νx.φ]n[x :=>]
x |=γ

DA a.φ ⇐⇒ transγ(x)(a) |=γ

DA φ x |=γ

DA 0 ⇐⇒ outγ(x)≥2 0 x |=γ

DA 1 ⇐⇒ outγ(x)≥2 1
x |=γ

AGS [β → a]φ ⇐⇒ ∀A ∈ σ(β).transTests
γ (A,a) |=γ

AGS φ x |=γ

AGS 〈β 〉 ⇐⇒ outTests
γ (x)≥BA σ(β)

x |=γ

Str ©φ ⇐⇒ tailγ(x) |=γ

Str φ x |=γ

Str 〈P〉 ⇐⇒ headγ(x)≥PropL P

x |=γ

LTS 〈a〉φ ⇐⇒ ∃y ∈ γ(x)(a).y |=γ

LTS φ

As usual we say a state x in a K-coalgebra γ satisfies φ ∈ Expr1
K if x |=γ

K φ and that φ is valid if every
state of every K-coalgebra satisfies φ . For example, in the three deterministic automata above each state
Γ satisfies every φ ∈ Γ. Notice that the semantics for LTS is exactly that of the modal µ-calculus with
ν and ∧ but without the duals µ and ∨. In the same way, for each K the semantics |=γ

K is precisely the
semantics of the coalgebraic µ-calculus [6], which is the natural generalisation of the modal µ-calculus.
More precisely, each unary and nullary modal operator [b], [ei], [πi],〈a〉,3 can be naturally assigned a
coalgebraic semantics which induces the above semantics.

The tableau construction of the previous section turns out to be a slight rewriting of the tableau
construction used in the coalgebraic µ-calculus.

Theorem 2. For all φ ∈ ExprK , BRS’s automata construction is a tableau construction which builds a
satisfying model of φ , seen as a formula of the respective coalgebraic µ-calculus

In [2] BRS define a complete equational logic ≡K⊆ Expr1
K ×Expr1

K
1, generic in K. By completeness

we mean ({φ},Autφ) and ({ψ},Autψ) are bisimilar iff φ ≡K ψ is derivable. For our example functors
their equational logic takes the following form:

>∧φ ≡K φ φ ∧ψ ≡K ψ ∧φ φ ∧ (ψ ∧χ)≡K (φ ∧ψ)∧χ

νx.φ ≡K φ [x := νx.φ] φ [x := ψ]∧ψ ≡K ψ =⇒ (νx.φ)∧ψ ≡K ψ

>≡DA a.> >≡DA 0 0∧1≡DA 1 a.φ ∧a.ψ ≡DA a.(φ ∧ψ)
>≡AGS [β → a]> >≡AGS [⊥→ a]φ >≡AGS 〈⊥〉 〈β 〉∧ 〈β ′〉 ≡AGS 〈β ∨β ′〉

[β → a]φ ∧ [β ′→ a]φ ≡AGS [β ∨β ′→ a]φ [β → a]φ ∧ [β → a]ψ ≡AGS [β → a](φ ∧ψ)
>≡Str ©> >≡Str 〈 /0〉 〈P〉∧ 〈P′〉 ≡Str 〈P∪P′〉 ©φ ∧©ψ ≡Str ©(φ ∧ψ)

Also ≡K is a congruence for each unary modal operator a., [β → a] and © and satisfies the usual axioms
of equational logic, plus uniform renaming of variables and their binders. Interestingly, the equations
involving νx are precisely those used by Kozen in [3], to prove the completeness of the aconjunctive
fragment of the modal µ-calculus. There he writes them in their dual form, using ∨ and µ . Aside
from the semilattice equations for ∧ and > and renaming of variables, the other equations may be be
understood as the rank-1 modal formulae [9] which only involve ∧ and >. There are no equations for
Pω involving modal operators precisely because 3 doesn’t preserve conjunctions.

6 Generic Decidability and a Translation

We mentioned in the introduction that for every expression φ ∈ ExprK there is an associated expression
φ ′ such that: φ ≡K ψ if and only if φ ′→ ψ ′ is valid i.e. every state in a coalgebra that satisfies φ ′ also

1Strictly speaking they do it for the multisorted version of the syntax but it follows for the single-sorted version

67

Coalgebraic Expressions Myers

satisfies ψ ′ and vice-versa. In fact for DA, AGS and Str we have φ ′ = φ : no change is needed. The
only problem is when K contains Pω . Intuitively, to capture relations up to bisimulation one needs
Hennessy-Milner logic i.e. conjunctions involving 2s as well as 3s. One can overcome this problem by
changing the syntax slightly and using ∇{φ1, . . . ,φn}, rather than conjunction and 3 in LPω :n. Modulo
these changes:

Theorem 3. For each φ ,ψ ∈ ExprK one has φ ≡K ψ if and only if φ ↔ ψ is valid

Proof. Just as one associates a regular language to a regular expression one can also associate a set of for-
mulae Con jK(φ)⊆LTreeK , to each expression φ . Then one shows φ ≡K ψ ⇐⇒ Con jK(φ) =Con jK(ψ)
and that for all φ a state in a K-coalgebra satisfies φ iff it satisfies every χ ∈ Con jK . Briefly, Con jDA,
Con jAGS, Con jLTS assign expressions regular languages, regular languages of guarded strings and for-
mulae of Hennessy-Milner logic, respectively. Moreover the join-semilattice with bottom structure of K
– which lifts to the final K-coalgebra – is crucial to the proof.

Corollary 1 ([6]). Decidability of behavioural equivalence follows from the decidability of validity of
the coalgebraic µ-calculus.

Example 4. The regular expressions for a ∈ A are defined:

RegExp 3 r ::= /0 | ε | a | r1 + r2 | r1r2 | r∗

We define the translation τ : RegExp→ Expr1
DA by: τ(/0) = 0, τ(ε) = 1, τ(a) = a.1, τ(r1 + r2) = τ(r1)∧

τ(r2), τ(r1r2) = τ(r1)[1 := τ(r2)] and finally τ(r∗) = νx.(1∧τ(r)[1 := x]). Then Autτ(r) is the automaton
which accepts r’s regular language. Moreover any state in a finite DA-coalgebra which satisfies τ(r) also
accepts each word from this language, although it may accept additional words too. As an exercise one
can check that a state satisfies τ(aa∗) = a.νx.(1∧a.x) iff it satisfies τ(a∗a) = νx.(a.1∧a.x).

The translated formula τ(r) ∈ Expr1
DA can be exponentially larger than r due to compositions e.g.

τ((a + b)n) is a binary tree of depth n. However one may coinductively define composition as follows.
Let comp : ExprK ×ExprK → ExprK be comp(νx.φ ,ψ) = comp(φ [x := νx.φ],ψ), comp(φ1 ∧ φ2,ψ) =
comp(φ1)∧ comp(φ2,ψ), comp(a.φ ,ψ) = a.comp(φ ,ψ), comp(>,ψ) = comp(0,ψ) = > and finally
comp(1,ψ) = ψ . Then τ((a + b)n) can be represented as comp(τ(a + b),comp(τ(a + b), . . .), which
avoids the exponential blow up.

References
[1] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. Algebras for Kripke polynomial coalgebras. In Proc.

of 24th Ann. IEEE Symp. on Logic in Comput. Sci., LICS 2009 (Los Angeles, Aug. 2009), IEEE CS Press, to
appear.

[2] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. A Kleene theorem for polynomial coalgebras. In L.
de Alfaro, ed., Proc. of 12th Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS 2009 (York, March 2009), v. 5504 of Lect. Notes in Comput. Sci., pp. 122–136. Springer, 2009.

[3] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
[4] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and

Comput., 110(2):366–390, 1994.
[5] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Technical report, Dept. of Computer Sci.,

Cornell University, 2008. http://hdl.handle.net/1813/10173
[6] C. Kupke, C. Cirstea, and D. Pattinson. Complexity of the coalgebraic mu-calculus. In Proc. of 23rd Int.

Wksh. on Computer Science Logic, CSL 2009 (Coimbra, Sept. 2009), Lect. Notes in Comput. Sci., Springer, to
appear.

[7] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–80, 2000.

68

http://hdl.handle.net/1813/10173

Coalgebraic Expressions Myers

[8] L. Schröder and D. Pattinson. Modular algorithms for heterogeneous modal logics. In L. Arge et al., eds., Proc.
of 34th Int. Coll. on Automata, Languages and Programming, ICALP 2007 (Wrocław, July 2007), v. 4596 of
Lect. Notes in Comput. Sci., pp. 459–471. Springer, 2007.

[9] L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans. on Comput. Log., 10(2),
article 13, 2009.

69

	Introduction
	Kripke Polynomial Functors
	Generic Syntax
	Generic Final Semantics
	Generic Modal Semantics and Equational Logic
	Generic Decidability and a Translation

