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Distributed systems play an essential role in society today. For example, distributed sys-
tems form the basis for critical infrastructure in different domains such as finance, medicine,
aeronautics, telephony, and Internet services. It is of great importance that such systems work
properly. However, quality assurance of distributed systems is non-trivial since they depend
on unpredictable factors, such as different processing speeds of independent components. It is
highly challenging to test such distributed systems after deployment under different relevant
conditions. These challenges motivate frameworks combining precise modeling and analysis
with suitable tool support. In particular, compositional verification systems allow the different
components to be analyzed independently from their surrounding components. Thereby, it is
possible to deal with systems consisting of many components.

Object orientation is the leading framework for concurrent and distributed systems, rec-
ommended by the RM-ODP [15]. However, method-based communication between concurrent
units may cause busy-waiting, as in the case of remote and synchronous method invocation,
e.g., Java RMI [2]. Concurrent objects communicating by asynchronous method calls have been
proposed as a promising framework to combine object-orientation and distribution in a natural
manner. Each concurrent object encapsulates its own state and processor, and internal inter-
ference is avoided as at most one process is executing on an object at a time. Asynchronous
method calls allow the caller to continue with its own activity without blocking while waiting
for the reply, and a method call leads to a new process on the called object. The notion of
futures [6, 19, 12, 20] improves this setting by providing a decoupling of the process invoking
a method and the process reading the returned value. By sharing future identities, the caller
enables other objects to wait for method results. However, futures complicate program analysis
since programs become more involved compared to semantics with traditional method calls, and
in particular local reasoning is a challenge. ABS [17] is a high-level imperative object-oriented
modeling language, based on the concurrency and synchronization model of Creol [18]. It sup-
ports futures and concurrent objects with an asynchronous communication model suitable for
loosely coupled objects in a distributed setting. In this work, we present our testing and veri-
fication tools for ABS programs.

The execution of a distributed system can be represented by its communication history or
trace; i.e., the sequence of observable communication events between system components [8, 14].
At any point in time the communication history abstractly captures the system state [10, 9]. In
fact, traces are used in the semantics for full abstraction results (e.g., [16, 1]). The local history
of an object reflects the communication visible to that object, i.e., between the object and its
surroundings. A system may be specified by the finite initial segments of its communication
histories, and a history invariant is a predicate which holds for all finite sequences in the set of
possible histories, expressing safety properties [5].

In our reasoning system, we formalize object communication by an operational semantics
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based on five kinds of communication events, capturing asynchronous communication, shared
futures, and object creation, where each event is visible to only the object generating it. Con-
sequently, the local histories of two different objects share no common events. For each object,
a local history invariant can be derived from the class invariant by hiding the local state of
the object. Modularity is achieved since history invariants can be established independently
for each object, without interference, and composed at need. This results in behavioral spec-
ifications of dynamic system in an open environment. Such specifications allow objects to be
specified independently of their internal implementation details, such as the internal state vari-
ables. In order to derive a global specification of a system composed of several components,
one may compose the specification of different components. Global specifications can then be
provided by describing the observable communication history between each component and its
environment.

In this work we implement a runtime assertion checker and extend the KeY theorem prover
for testing and verifying ABS programs, respectively. For runtime assertion checking the ABS
interpreter is augmented by an explicit representation of the global history, reflecting all events
that have occurred in the execution. And the ABS modeling language is extended with method
annotations such that users can define software behavioral specification [13], i.e., invariants,
preconditions, assertions and postconditions, inline with the code. We provide the ability to
specify both state-based and history-based properties, which are checked during simulation.
History wellformedness, i.e. the order of the events, the non-nullness of the calling objects and
the characteristic of futures, is proved and need not be checked during execution. Although
by using runtime assertion checking, we gain confidence in the quality of programs, correctness
of the software is still not fully guaranteed for all runs. Formal verification may instead show
that a program is correct by proving that the code satisfies a given specification. As formal
verification tool we use and extend a variant of the KeY verification system [7], which supports
ABS as target language. In particular, KeY features a semi-automatic theorem prover based
on dynamic logic. The design of its Gentzen-style sequent calculus follows the symbolic execu-
tion paradigm. For the ABS formalisation in dynamic logic, we follow the approach developed
in [4, 3], but use the improved history formalisation as presented in [11]. The characteristic
feature of the calculus is that it achieves to stay in a sequential setting while reasoning about
properties of concurrent and distributed systems.

ABS runtime assertion checking and theorem proving of ABS programs in KeY are illustrated
via two examples: a fair version of the reader/writer example and a publisher/subscriber ex-
ample. The first example shows how we verify the class implementation by relating the objects
state with the communication history. The second example shows how we achieve composi-
tional reasoning by proving the order of the local history events for each object. Along these
two examples, we evaluate and compare both approaches with respect to their scope and ease
of application. In particular, we investigate their strengths and weaknesses concerning the dif-
ferent properties. We give recommendations on which approach is suitable for which purpose
as well as the implied costs and benefits of each approach. Finally, we identify areas where
improvements are needed and provide directions of future research.
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