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How would you teach set theory to students who are
familiar with type theory and proof assistants?

v

Classical set theory with Zermelo-Fraenkel axioms

v

Type theory with XM and impredicative Prop

v

Coq as proof assistant

v

Perspective very different from mathematical textbooks

v

Explore an axiomatization in an expressive, explicit, and
familiar logic
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Axioms

S : Type
€ :S8S—S— Prop

X=y < X=Yy
zel « L
ze{x,y} & z=xVz=y
zelUx < dyex.zey
zE€ Px + zCx
z€ RO@x <« Jy € x. Ryz A unique (Ry)

» Replacement axiom is higher-order, R : S — S — Prop

» Infinity and choice are not needed for this talk



Classes

v

v

v

v

v

A class is a predicate p: S — Prop

Not every class can be represented as a set, e.g., Ax. x ¢ x

Type theory provides classes and relations on classes
Classes are not formalized by Zermelo-Fraenkel set theory

Von-Neumann-Godel-Bernays set theory accommodates sets
and classes in first-order logic
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Separation and Description

can be expressed with replacement

ZEXNP < zZzEXNApPX separation
p"p' < p unique and inhabited description

An operator that maps relations R on S to total functions
f 1S — S such that f agrees with R on unique images can be
expressed (i.e., Rx(fx))
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Numbers and Ordered Pairs

can be represented as sets

» Functions, numbers, and pairs already exist in type theory

» Can express functions = : N — S, succ: S — S, and
pred : S — S such that:

m=m < m=n

succn = n+1
predn+1 = n
» Can express functions pair:S —+S — S, fst : S — S, and
snd : S — S such that:
pair x y = pair X' y/ — x=x'Ay=y
fst (pair x y) = x
snd (pair x y) = y

» [Barras 2010] [von Neumann 1923] [Kuratowski 1921]
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Can Construct Models of Axioms

v

Without infinity hereditarily finite sets suffice

v

Use Ackermann encoding into numbers

v

Need strong excluded middle for replacement (Prop =~ bool)

v

Aczel, Werner, Miquel construct models with infinite sets

15



Cumulative Hierarchy

Horizontal lines represent stages (successors and limits)
Blue lines also represent slices

Every well-founded set appears in some slice

Stages are well-ordered

Every well-ordered set is order-isomorphic to a unique segment .
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Well-Founded Sets

v

Define class # of well-founded sets inductively

xXCW
xeW

v

Well-founded sets are defined as sets that admit e-induction

v

Inductive definition unknown in set theory

v

Regularity axiom can be expressed as Vx.x € #

v

First-order characterization of x € # seems to require infinity
(to express transitive closure)

v

First-order characterization of x € #' N 7 straightforward
Aczel [1988] studies non-well-founded sets

v

v

W cannot be represented as a set



Stages of Cumulative Hierarchy

» Define class 2 of cumulative sets inductively
xC% xe ¥
UxeZ xUPxeZ

v

Z well-ordered by C, unbounded, ) least element
v =%

xCyiffxeyforall x,y € &

xUPx =Pxif xc & since ¥ CT

Definition of % is instance of tower construction

v

v

v

v

v

% usually defined with transfinite induction on ordinals
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Ordinals

» Define class ¢ of ordinals inductively
xCO xXeo
Uxeo xU{x}teo

» Every cumulative slice contains exactly one ordinal

v

Every ordinal is the set of all smaller ordinals

v

Every well-ordered set is order isomorphic to a unique ordinal

v

O order isomorphic with 2

Definition of & is instance of tower construction

v

11/15



First-Order Characterization of Ordinals

» Ordinals are hereditarily transitive and well-founded sets
[Bernays 1931]

v

XeEOiffxe T and xC T and x e W
XxXeEOiffxe T and xC .7 and x C X

v

» 7 ={x|Vyex. yCx} transtive sets
» Z ={x|JyexVzex z¢y} regular sets
» If x€ 7, then x e # iff Zx C XA

v

Corresponding inductive characterization:

xeJ xC0O
xXeo
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Tower Construction for Sets

» Assume f : S — S

» Define class T of sets inductively:

xCT xeT
UxeT xUfxeT

» T is well-ordered by C, () least element

» x U fx successor of x if x € T not maximal

» Every segment of T can be represented as a set
> If f preserves transitivity and well-foundedness,

and x € fx for all x,

» T unbounded

T cannot be represented as a set

Every well-ordered set is isomorphic to a proper segment of T
xeyiffxCyforallx,yeT

v vy
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Tower

Construction for Complete Partial Orders

Assume type X and partial order <

Assume xg : X

Assume increasing function f : X — X (i.e., x < fx)
Assume family . of classes on X, closed under subclasses
Assume function | | that yields supremum for every p € .%¥

Define class T on X inductively:

xeT pCT pes p inhabited

x0T fxeT Llpe T

T well-ordered by < (xg least element, f yields successors)
T unbounded iff f has no fixed point in T

If T €., then | |T is unique fixed point of f in T
(Bourbaki-Witt theorem)

See forthcoming paper at ITP 2015
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Final Remarks

» Type theory provides expressive language for talking about
sets and classes
» more natural than first-order logic
» first-order encodings are low-level and tedious; e.g.,
> well-founded sets
» von-Neumann-Godel-Bernays set theory
» Many aspects of set theory can be formulated more generally
at the level of type theory:
> Well-orderings
» Transfinite recursion
» Tower construction
» Well-ordering theorem

» Cumulative hierarchy can be considered before ordinals,
transfinite recursion is not needed
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