
Reactive Systems: Modelling, Specification and
Verification

EWSCS’07–Lecture 5

Weak bisimilarity (reprise) and weak bisimulation games

Properties of weak bisimilarity

Example: a communication protocol and its modelling in CCS

Concurrency workbench (CWB)

An introduction to Hennessy-Milner logic (HML)

Syntax and semantics of HML

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Transition Relation

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS such that τ ∈ Act.

Definition of the Weak Transition Relations

Let a be an action or ε:

a
=⇒ =

{
(

τ−→)∗◦ a−→ ◦(τ−→)∗ if a 6= ε

(
τ−→)∗ if a = ε

Definition

If a is an observable action, then â = a. On the other hand, τ̂ = ε.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimilarity

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS such that τ ∈ Act.

Weak Bisimulation

A binary relation R ⊆ Proc × Proc is a weak bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act (including τ):

if s
a−→ s ′ then t

â
=⇒ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a−→ t ′ then s

â
=⇒ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Weak Bisimilarity

Two processes p1, p2 ∈ Proc are weakly bisimilar (p1 ≈ p2) if and
only if there exists a weak bisimulation R such that (p1, p2) ∈ R.

≈ =
⋃
{R | R is a weak bisimulation}

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimulation Game

Definition

Same as for the strong bisimulation game except that

defender can now answer using
a

=⇒ moves.

The attacker is still using only
a−→ moves.

Let’s play!

Theorem

States s and t are weakly bisimilar if and only if the defender
has a universal winning strategy starting from the
configuration (s, t).

States s and t are not weakly bisimilar if and only if the
attacker has a universal winning strategy starting from the
configuration (s, t).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimulation Game

Definition

Same as for the strong bisimulation game except that

defender can now answer using
a

=⇒ moves.

The attacker is still using only
a−→ moves.

Let’s play!

Theorem

States s and t are weakly bisimilar if and only if the defender
has a universal winning strategy starting from the
configuration (s, t).

States s and t are not weakly bisimilar if and only if the
attacker has a universal winning strategy starting from the
configuration (s, t).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimilarity – Properties

Properties of ≈
an equivalence relation

the largest weak bisimulation

validates lots of natural laws, e.g.

a.τ.P ≈ a.P
P + τ.P ≈ τ.P
a.(P + τ.Q) ≈ a.(P + τ.Q) + a.Q
P + Q ≈ Q + P P|Q ≈ Q|P P + Nil ≈ P . . .

strong bisimilarity is included in weak bisimilarity (∼⊆≈)

abstracts from τ loops

�� ��
• a

&&NNN
NNN

τ
%% ≈ • a

&&NNN
NNN

• •

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Case Study: Communication Protocol

Send
def
= acc.Sending Rec

def
= trans.Del

Sending
def
= send.Wait Del

def
= del.Ack

Wait
def
= ack.Send + error.Sending Ack

def
= ack.Rec

Med
def
= send.Med′

Med′ def
= τ.Err + trans.Med

Err
def
= error.Med

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Case Study: Communication Protocol

Send
def
= acc.Sending Rec

def
= trans.Del

Sending
def
= send.Wait Del

def
= del.Ack

Wait
def
= ack.Send + error.Sending Ack

def
= ack.Rec

Med
def
= send.Med′

Med′ def
= τ.Err + trans.Med

Err
def
= error.Med

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl
def
= (Send |Med |Rec) r {send, trans, ack, error}

Spec
def
= acc.del.Spec

Question

Impl
?
≈ Spec

1 Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

2 Use the Concurrency WorkBench (CWB).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl
def
= (Send |Med |Rec) r {send, trans, ack, error}

Spec
def
= acc.del.Spec

Question

Impl
?
≈ Spec

1 Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

2 Use the Concurrency WorkBench (CWB).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl
def
= (Send |Med |Rec) r {send, trans, ack, error}

Spec
def
= acc.del.Spec

Question

Impl
?
≈ Spec

1 Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

2 Use the Concurrency WorkBench (CWB).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl
def
= (Send |Med |Rec) r {send, trans, ack, error}

Spec
def
= acc.del.Spec

Question

Impl
?
≈ Spec

1 Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

2 Use the Concurrency WorkBench (CWB).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl
def
= (Send |Med |Rec) r {send, trans, ack, error}

Spec
def
= acc.del.Spec

Question

Impl
?
≈ Spec

1 Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

2 Use the Concurrency WorkBench (CWB).

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

CCS Expressions in CWB

CCS Definitions

Med
def
= send.Med′

Med′ def
= τ.Err + trans.Med

Err
def
= error.Med

...
Impl

def
= (Send |Med |Rec)r

{send, trans, ack, error}

Spec
def
= acc.del.Spec

CWB Program (protocol.cwb)

agent Med = send.Med’;
agent Med’ = (tau.Err + ’trans.Med);
agent Err = ’error.Med;
...
set L = {send, trans, ack, error};
agent Impl = (Send | Med | Rec) r L;

agent Spec = acc.’del.Spec;

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

CWB Session

[luca@vel5638 CWB]$./xccscwb.x86-linux

> help;

> input "protocol.cwb";

> vs(5,Impl);

> sim(Spec);

> eq(Spec,Impl); ** weak bisimilarity **

> strongeq(Spec,Impl); ** strong bisimilarity **

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

α.P ≈ α.Q for each action α ∈ Act

P | R ≈ Q | R and R | P ≈ R | Q for each CCS process R

P[f] ≈ Q[f] for each relabelling function f

P \ L ≈ Q \ L for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

α.P ≈ α.Q for each action α ∈ Act

P | R ≈ Q | R and R | P ≈ R | Q for each CCS process R

P[f] ≈ Q[f] for each relabelling function f

P \ L ≈ Q \ L for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that P ≈ Q. Then

α.P ≈ α.Q for each action α ∈ Act

P | R ≈ Q | R and R | P ≈ R | Q for each CCS process R

P[f] ≈ Q[f] for each relabelling function f

P \ L ≈ Q \ L for each set of labels L.

What about choice?

τ.a.Nil ≈ a.Nil but τ.a.Nil + b.Nil 6≈ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec
≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl ≡ Spec
≡ is an abstract equivalence, e.g. ∼ or ≈
Spec is often expressed in the same language as Impl

Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
|= is the satisfaction relation

Property is a particular feature, often expressed via a logic

Property is a partial specification of the intended behaviour

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of
reactive systems.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

drink a coffee (can drink a coffee now)

does not drink tea

drinks both tea and coffee

drinks tea after coffee

Temporal Properties – behaviour in time

never drinks any alcohol
(safety property: nothing bad can happen)

eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Intuition:

tt all processes satisfy this property

ff no process satisfies this property

∧, ∨ usual logical AND and OR

〈a〉F there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually
are not included.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Intuition:

tt all processes satisfy this property

ff no process satisfies this property

∧, ∨ usual logical AND and OR

〈a〉F there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually
are not included.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic – Syntax

Syntax of the Formulae (a ∈ Act)

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Intuition:

tt all processes satisfy this property

ff no process satisfies this property

∧, ∨ usual logical AND and OR

〈a〉F there is at least one a-successor that satisfies F

[a]F all a-successors have to satisfy F

Remark

Temporal properties like always/never in the future or eventually
are not included.

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic – Semantics

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Validity of the logical triple p |= F (p ∈ Proc , F a HM formula)

p |= tt for each p ∈ Proc

p |= ff for no p (we also write p 6|= ff)

p |= F ∧ G iff p |= F and p |= G

p |= F ∨ G iff p |= F or p |= G

p |= 〈a〉F iff p
a−→ p′ for some p′ ∈ Proc such that p′ |= F

p |= [a]F iff p′ |= F , for all p′ ∈ Proc such that p
a−→ p′

We write p 6|= F whenever p does not satisfy F .

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

What about Negation?

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G)c = F c ∨ G c

(F ∨ G)c = F c ∧ G c

(〈a〉F)c = [a]F c

([a]F)c = 〈a〉F c

Theorem (F c is equivalent to the negation of F)

For any p ∈ Proc and any HM formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

What about Negation?

For every formula F we define the formula F c as follows:

ttc = ff

ff c = tt

(F ∧ G)c = F c ∨ G c

(F ∨ G)c = F c ∧ G c

(〈a〉F)c = [a]F c

([a]F)c = 〈a〉F c

Theorem (F c is equivalent to the negation of F)

For any p ∈ Proc and any HM formula F

1 p |= F =⇒ p 6|= F c

2 p 6|= F =⇒ p |= F c

EWSCS’07–Lecture 5 Reactive Systems: Modelling, Specification and Verification

