Reactive Systems: Modelling, Specification and

Verification

EWSCS'07-Lecture 5

Weak bisimilarity (reprise) and weak bisimulation games
Properties of weak bisimilarity

Example: a communication protocol and its modelling in CCS
Concurrency workbench (CWB)

An introduction to Hennessy-Milner logic (HML)

Syntax and semantics of HML

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Transition Relation

Let (Proc, Act,{~2+| a € Act}) be an LTS such that 7 € Act.

Definition of the Weak Transition Relations

Let a be an action or ¢:

Definition

If a is an observable action, then 3 = a. On the other hand, 7 = ¢.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimilarity

Let (Proc, Act,{~2+| a € Act}) be an LTS such that 7 € Act.

Weak Bisimulation

A binary relation R C Proc x Proc is a weak bisimulation iff
whenever (s, t) € R then for each a € Act (including 7):

o if s = s’ then t == t/ for some t’ such that (s’,t') € R

o if t =% t’ then s == s’ for some s’ such that (s',t') € R.

| \

Weak Bisimilarity

Two processes p1, p2 € Proc are weakly bisimilar (p1 ~ po) if and
only if there exists a weak bisimulation R such that (p1, p2) € R.

N = U{R | R is a weak bisimulation}

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimulation Game

Definition

Same as for the strong bisimulation game except that
@ defender can now answer using == moves.

The attacker is still using only —— moves.

Let's play!

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimulation Game

Definition
Same as for the strong bisimulation game except that

o a
@ defender can now answer using = moves.

The attacker is still using only —— moves.

Let's play!

Theorem
@ States s and t are weakly bisimilar if and only if the defender
has a universal winning strategy starting from the
configuration (s, t).
@ States s and t are not weakly bisimilar if and only if the
attacker has a universal winning strategy starting from the
configuration (s, t).

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Weak Bisimilarity — Properties

Properties of ~

@ an equivalence relation

@ the largest weak bisimulation
o validates lots of natural laws, e.g.

a.T.P~aP

P+71.P~TP

a(P+7.Q)=a(P+7.0Q)+aQ
P+Q~Q+P P|Q ~ Q|P P+ Nil = P

@ strong bisimilarity is included in weak bisimilarity (~ C =)

@ abstracts from 7 loops

’T'Ci ~ (]

~ ~

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Case Study: Communication Protocol

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Case Study: Communication Protocol

Send def acc.Sending Rec % trans.Del
Sending o Send.Wait Del % Gel.Ack
Wait 4f 3ck.Send + error.Sending Ack % 3ck.Rec

Med % send.Med’

Med’ 9 7.Err + trans.Med

def
Err = error.Med

EWSCS’07-Lecture 5

Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl o (Send | Med | Rec) . {send, trans, ack, error}

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl o (Send | Med | Rec) . {send, trans, ack, error}

Spec % acc.del.Spec

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl o (Send | Med | Rec) . {send, trans, ack, error}

Spec % acc.del.Spec

?
Impl ~ Spec

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl o (Send | Med | Rec) . {send, trans, ack, error}

Spec % acc.del.Spec

?
Impl ~ Spec

@ Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verification Question

Impl o (Send | Med | Rec) . {send, trans, ack, error}

Spec % acc.del.Spec

?
Impl ~ Spec

@ Draw the LTS of Impl and Spec and prove (by hand) the
equivalence.

@ Use the Concurrency WorkBench (CWB).

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

CCS Expressions in CWB

CCS Definitions CWB Program (protocol.cwb)

Med %f send.Med’ agent Med = send.Med’;
Med’ % + Err + Erans.Med agent Med' = (tau.Err 4 'trans.Med);
Err def T Ve agent Err = 'error.Med;

impl def (Send |[Med | Rec)~. | set L = {send, trans, ack, error};
{send, trans, ack, error} agent Impl = (Send | Med | Rec) ~\ L;

Spec def acc.del.Spec agent Spec = acc.'del.Spec;

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

CWB Session

[luca@vel5638 CWB]$./xccscwb.x86-1linux

> help;

> input "protocol.cwb";

> vs(5,Impl);

> sim(Spec);

> eq(Spec,Impl); ** weak bisimilarity **

> strongeq(Spec,Impl); ** strong bisimilarity **

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Let P and Q be CCS processes such that P ~ Q. Then

@ a.P ~ «a.Q for each action o € Act

e PIR~Q|RandR|P~R|Q for each CCS process R
o P[f] ~ Q|f] for each relabelling function f

o P\ L~ Q\ L for each set of labels L.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Theorem
Let P and Q be CCS processes such that P ~ Q. Then

@ a.P ~ «a.Q for each action o € Act

e PIR~Q|RandR|P~R|Q for each CCS process R
o P[f] ~ Q|f] for each relabelling function f

o P\ L~ Q\ L for each set of labels L.

What about choice?
T.a.Nil = a.Nil but 71.a.Nil + b.Nil % a.Nil + b.Nil

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Is Weak Bisimilarity a Congruence for CCS?

Theorem
Let P and Q be CCS processes such that P ~ Q. Then

@ a.P ~ «a.Q for each action o € Act

e PIR~Q|RandR|P~R|Q for each CCS process R
o P[f] ~ Q|f] for each relabelling function f

o P\ L~ Q\ L for each set of labels L.

What about choice?
T.a.Nil = a.Nil but 71.a.Nil + b.Nil % a.Nil + b.Nil

Weak bisimilarity is not a congruence for CCS.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl = Spec
@ = is an abstract equivalence, e.g. ~ or &

@ Spec is often expressed in the same language as Impl

@ Spec provides the full specification of the intended behaviour

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Verifying Correctness of Reactive Systems

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

Impl = Spec
@ = is an abstract equivalence, e.g. ~ or &

@ Spec is often expressed in the same language as Impl

@ Spec provides the full specification of the intended behaviour

Model Checking Approach

Impl |= Property
@ |= is the satisfaction relation

@ Property is a particular feature, often expressed via a logic
@ Property is a partial specification of the intended behaviour

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Model Checking of Reactive Systems

Develop a logic in which we can express interesting properties of
reactive systems.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties — what can happen (possibility, necessity)

drink a coffee (can drink a coffee now)
does not drink tea
drinks both tea and coffee

drinks tea after coffee

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties — what can happen (possibility, necessity)

@ drink a coffee (can drink a coffee now)
@ does not drink tea
@ drinks both tea and coffee

@ drinks tea after coffee

Temporal Properties — behaviour in

@ never drinks any alcohol
(safety property: nothing bad can happen)

@ eventually will have a glass of wine
(liveness property: something good will happen)

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Logical Properties of Reactive Systems

Modal Properties — what can happen (possibility, necessity)

@ drink a coffee (can drink a coffee now)
@ does not drink tea
@ drinks both tea and coffee

@ drinks tea after coffee

Temporal Properties — behaviour in

@ never drinks any alcohol
(safety property: nothing bad can happen)

@ eventually will have a glass of wine
(liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic — Syntax

Syntax of the Formulae (a € Act)

F.G == tt | £ | FAG | FVG | (a)F | [a]F

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic — Syntax

Syntax of the Formulae (a € Act)

F.G == tt | £ | FAG | FVG | (a)F | [a]F

Intuition:
tt all processes satisfy this property
ff no process satisfies this property
A, V usual logical AND and OR
(a)F there is at least one a-successor that satisfies F

[a] F all a-successors have to satisfy F

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic — Syntax

Syntax of the Formulae (a € Act)

F.G == tt | £ | FAG | FVG | (a)F | [a]F

Intuition:
tt all processes satisfy this property
ff no process satisfies this property
A, V usual logical AND and OR
(a)F there is at least one a-successor that satisfies F

[a] F all a-successors have to satisfy F

Temporal properties like always/never in the future or eventually
are not included.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

Hennessy-Milner Logic — Semantics

Let (Proc, Act,{~2+| a € Act}) be an LTS.

Validity of the logical triple (p € Proc, F a HM formula)
p = tt for each p € Proc
p = ff for no p (we also write p b~ f)
pEFAGIiffpEFandplEG
pEFVGiffpEForpEG
p = (a)F iff p 2 p’ for some p’ € Proc such that p’ = F
p = [a]F iff p' = F, for all p' € Proc such that p - p/

We write p £ F whenever p does not satisfy F.

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

What about Negation?

For every formula F we define the formula F€ as follows:
o tt°=1f
o F¢=tt
o (FANG) =F°vG©
e (FVG)=FNG®
o ((a)F)c = [a]F*
o ([a]F) = (a)F©

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

What about Negation?

For every formula F we define the formula F€ as follows:
o tt°=1f
o F¢=tt
o (FANG) =F°vG©
e (FVG)=FNG®
o ((a)F)c = [a]F*
o ([a]F) = (a)F©

Theorem (F€ is equivalent to the negation of F)

For any p € Proc and any HM formula F
Q@ pEF=plEF°
Q@ pEF=pEF°

EWSCS’07-Lecture 5 Reactive Systems: Modelling, Specification and Verification

