Monad algebras
Monad algebras

- An *algebra* of a monad \((T, \eta, \mu)\) is an object \(X\) with a map \(\xi : TX \to X\) such that

\[
\begin{align*}
X & \xrightarrow{\eta_X} TX \\
& \searrow \downarrow \nearrow \\
TX & \xrightarrow{\xi} X
\end{align*}
\]

\[
\begin{align*}
T(TX) & \xrightarrow{T\xi} TX \\
& \searrow \downarrow \nearrow \\
TX & \xrightarrow{\xi} X
\end{align*}
\]

- A *map* between two algebras \((Y, \chi)\) and \((X, \xi)\) is a map \(h\) such that

\[
\begin{align*}
TY & \xrightarrow{T h} TX \\
& \searrow \downarrow \nearrow \\
Y & \xrightarrow{h} X
\end{align*}
\]

- The algebras of the monad and maps between them form a category \(\text{Alg}(T)\), called the *Eilenberg-Moore category*, with an obvious forgetful functor \(U : \text{Alg}(T) \to C\).
Kleisli triple algebras

- A variation of algebras fitting more smoothly with Kleisli triples is this.

- A *algebra* of a Kleisli triple \((T, \eta, (-)^*)\) (*a Mendler-style algebra, an algebra in extension form, no-iteration form*) is given by
 - an object \(X\),
 - a family of maps \((-)^+_Y : \mathcal{C}(Y, X) \to \mathcal{C}(TY, X)\) indexed by \(Y \in |\mathcal{C}|\)
 such that
 - if \(f : Y \to X\), then \(f^+ \circ \eta_Y = f\)
 - if \(k : Z \to TY, f : Y \to X\), then \((f^+ \circ k)^+ = f^+ \circ k^* : TZ \to X\)

- Naturality of \((-)^+\) is not required, it follows.

- There's also the correct concept of Kleisli triple algebra map. (Definition omitted.)
Monad algebras = Kleisli triple algebras

- Algebras of monads/Kleisli triples with the same carrier X are in a bijection.

- This is again crucially by the Yoneda lemma.

$$\begin{align*}
 TX \to X \\
 C(Y, X) \to C(TY, X) \text{ nat. in } Y
\end{align*}$$

- From ξ, one defines $(-)^+$ by $f^+ = \xi \circ Tf$.
- From $(-)^+$, one defines ξ by $\xi = \text{id}_X^+$.

- The respective categories are isomorphic.
FP intuition

- An algebra of a monad T with carrier X is a “handler” of computations of values of the type X (and only of that type!).

- $\xi : TX \to X$ –
 a value of X can be extracted from a computation of values of X

- $(-)^+_{Ty} : C(Y, X) \to C(TY, X)$ –
 given a way $f : Y \to X$ to “observe” values of Y as values of X, $f^+ : TY \to X$ is a way of observing computations of values of Y
Eilenberg-Moore adjunction

- In the opposite direction of $U : \text{Alg}(T) \to C$ there is a functor $L : C \to \text{Alg}(T)$ defined by
 - $LX = (TX, \mu_X)$,
 - $Lf = Tf : (TY, \mu_Y) \to (TX, \mu_X)$ for $f : Y \to X$.
- L is left adjoint to U.
- $U \cdot L = T$. Indeed,
 - $U(LX) = U(TX, \mu_X) = TX$,
 - if $f : Y \to X$, then $U(Lf) = U(Tf) = Tf$.
- The unit of the adjunction is η.
- The E-M resolution of a monad is its final resolution.
Algebras of exceptions monads

- Algebras of the exceptions monad $TX = E + X$ are (by definition) objects X with a map $\xi : E + X \rightarrow X$ subject to 2 equations.

- They are in a bijection with pairs of an object X and map $E \rightarrow X$.

- The E-M category of this monad is isomorphic to the coslice category E/C.

 [FP intuition] These are handlers for exceptional computations!

- To able to extract a value from any given exceptional computation, you must know how to deal with the exception case.
Algebras of reader monads

- Algebras of the reader monad \(TX = S \Rightarrow X \) are (by definition) objects \(X \) with a map \(\text{get} : S \Rightarrow X \rightarrow X \) such that
 - \(\text{get} (\lambda s. x) = x \)
 - \(\text{get} (\lambda s. \text{get} (\lambda s'. f s s')) = \text{get} (\lambda s. f s s) \)
Algebras of state monads

- The E-M category of the state monad $TX = S \Rightarrow S \times X$ is isomorphic to the category of mnemoids.

- An algebra of this monad is an object X with a map $\text{getput} : S \Rightarrow S \times X \rightarrow X$ such that
 \[
 x = \text{getput} (\lambda s. (s, x))
 \]
 \[
 \text{getput} (\lambda s. \text{let } (s', g) = f s \text{ in } (s', \text{getput } g)) =
 \]
 \[
 \text{getput} (\lambda s. \text{let } (s', g) = f s \text{ in } g s')
 \]

- A mnemoid is an object X with maps $\text{get} : S \Rightarrow X \rightarrow X$ and $\text{put} : S \times X \rightarrow X$ such that
 \[
 x = \text{get} (\lambda s. \text{put } (s, x))
 \]
 \[
 \text{put} (s, \text{get } f) = \text{put} (s, f s)
 \]
 \[
 \text{put} (s, \text{put } (s', x)) = \text{put } (s', x)
 \]

- From ξ, one constructs get, put by $\text{get } f = \xi (\lambda s. (s, f s))$, $\text{put } (s, x) = \xi (\lambda_. (s, x))$.

- From get, put, one obtains ξ by $\xi f = \text{get } (\lambda s. \text{put } (f s))$.
Algebras of list monads

- The E-M category of the standard list monad is isomorphic to that of monoids, i.e., objects X with maps $1 \to X$ and $X \times X \to X$ satisfying left and right unitality and associativity.

- It is therefore also called the *free monoids monad*.

- The E-M category of the alternative list monad is in a bijection with semigroups with zero.

- A *semigroup with zero* is an object X with maps $1 \to X$ and $X \times X \to X$ satisfying left and right zeroness and associativity.
Algebras of free functor-algebras monads

- The E-M category $\text{Alg}(F^*)$ of the monad F^* of free algebras of a functor F is isomorphic to the category $\text{alg}(F)$ of algebras of F

\[
\begin{array}{ccc}
\text{Alg}(F^*) & \cong & \text{alg}(F) \\
& \searrow & \\
& C & \nearrow \\
& U & \\
\end{array}
\]

- For $FX = X \times X$, algebras with carrier X of the monad F^* are maps $\mu Z. X + Z \times Z \to X$ subject to two equations.

- They are in bijection with algebras with carrier X of the functor F, which are maps $X \times X \to X$ subject to no conditions (magnas).

- A monad with this property is said to be algebraically free on F.
Monad maps
Monad maps

- A monad map between monads T, T' on a category C is a natural transformation $\tau : T \rightarrow T'$ satisfying

\[
\begin{align*}
X & \xrightarrow{\eta_X} TX & & T(TX) & \xrightarrow{T\tau_X} T'(TX) & \xrightarrow{T'\tau_X} T'(T'X) \\
& \downarrow{\eta_X} & & \downarrow{\eta'_X} & & \downarrow{\mu_X} & & \downarrow{\mu'_X} \\
TX & \xrightarrow{\tau_X} T'X & & TX & \xrightarrow{\tau_X} & T'X
\end{align*}
\]

- Monads on C and maps between them form a category $\text{Monad}(C)$.

- $\text{Monad}(C)$ is the category of monoids in the (strict) monoidal category $([C, C], \text{Id}_C, \cdot)$.
Kleisli triple maps

- A map between two Kleisli triples T, T' is a family of maps $\tau_X : TX \to T'X$ indexed by $X \in |C|$ such that
 - $\tau_X \circ \eta_X = \eta'_X$,
 - if $k : X \to TY$, then $\tau_Y \circ k^* = (\tau_Y \circ k)^* \circ \tau_X$.

- Naturality of τ is not required, but it follows.

- Kleisli triples on C and maps between them form a category isomorphic to $\mathbf{Monad}(C)$.
Maps between exceptions, reader, writer monads

- Monad maps between the exception monads for sets E, E' are in a bijection with pairs of maps $1 \to E' + 1$ and $E \to E'$.

- Monad maps between the reader monads for sets S, S' are in a bijection with maps between S', S.

- Monad maps between the writer monads for monoids (P, o, \oplus) and (P', o', \oplus') are in a bijection with homomorphisms between these monoids.
Maps between state monads

- The monad maps between the state monads for S and S_0 are in a bijection with *(very well-behaved) lenses*.

- These are pairs of maps $\text{coget} : S_0 \rightarrow S$, $\text{coput} : S_0 \times S \rightarrow S_0$ such that
 - $s_0 = \text{coput} (s_0, \text{coget} s_0))$,
 - $\text{coget} (\text{coput} (s_0, s)) = s$,
 - $\text{coput} (\text{coput} (s_0, s), s') = \text{coput} (s_0, s')$.
Free functor-algebras monads are free

- The monad F^* of free algebras of a functor F (the algebraically-free monad on F), if it exists, is the free monad on F.

\[
\begin{array}{c}
\text{Monad}(C) \\
(\cdot)^* \quad \circlearrowleft \quad \downarrow u \\
\downarrow \downarrow \\
[C, C] \\
\end{array}
\]

\[
F^* \to R \\
\frac{F \to UR}{F \to U R}
\]

- (Use the full subcategory of $[C, C]$ of those functors for which $(-)^*$ exists.)

- If a monad T is free on F, it need not be algebraically-free on F.
- A monad T is free on F iff $T \cong \mu H. \text{Id} + F \cdot H$.
- It is algebraically free iff $TX \cong \mu Z. X + F(TX)$. This is generally a stronger condition.
Maps to continuation monads

- Let \(\text{xCnt}^R \) be the external continuation monad for \(R \)
 \((\text{xCnt}^R X = C(X, R) \triangleright R) \).
- Monad maps between an arbitrary monad \(T \) and the monad \(\text{xCnt}^R \)
 are in a bijection with algebras of \(T \) with carrier \(R \).
- Yoneda strikes again. :-)

\[
\begin{align*}
 TR & \to R \\
 C(X, R) & \to C(TX, R) \text{ nat. in } X \\
 TX & \to C(X, R) \triangleright R \text{ nat. in } X
\end{align*}
\]

- Let \(Cnt^R \) be the continuation monad for \(R \), which is strong.
- Strong monad maps between an arbitrary strong monad \(T \) and \(Cnt^R \)
 are in a bijection with algebras \(T \) with carrier \(R \).
Monad maps vs. functors between Kleisli categories

There is a bijection between monad maps $\tau : T \to T'$ and functors $V : \text{Kl}(T) \to \text{Kl}(T')$ such that

$$\text{Kl}(T) \xrightarrow{V} \text{Kl}(T')$$

This is defined by

- $V X = X$,
- $V k = Y \xrightarrow{k} TX \xrightarrow{\tau_X} T'X$ for $k : Y \to TX$

and

- $\tau_X = V(TX \xrightarrow{\text{id}_TX} TX) : TX \to T'X$.

Monad maps vs. functors between E-M categories

- There is a bijection between monad maps $\tau : T \to T'$ and functors $V : \text{Alg}(T') \to \text{Alg}(T)$ such that

$$
\begin{array}{c}
\text{Alg}(T') \\
\downarrow V \\
\text{Alg}(T)
\end{array}
\begin{array}{c}
\downarrow U' \\
\downarrow U \\
\downarrow C
\end{array}
$$

(Note the reversed direction.)

- This is defined by
 - $V(X, \xi) = (X, TX \xrightarrow{\tau_X} T'X \xrightarrow{\xi} X)$,
 - $Vh = h : (Y, \chi \circ \tau_Y) \to (X, \xi \circ \tau_X)$ for $h : (Y, \chi) \to (X, \xi)$

and
 - $\tau_X = \text{let } (T'X, \zeta) = V(T'X, \mu'_X) \text{ in } \zeta \circ T\eta'_X$.