Monads and interaction:
Lecture 4

Tarmo Uustalu

MGS 2021, Sheffield, UK, 12–16 Apr. 2021
Monad-comonad interaction laws
Effects happen in interaction

- To run,
 - an effectful (effect-requesting) program behaving as a computation
 needs to interact with
 - a environment
 that an effect-providing (coeffectful) machine behaves as

- E.g.,
 - a nondeterministic program needs a machine making choices;
 - a stateful program needs a machine coherently responding to fetch and store commands.
Monad-comonad interaction laws

- Let C be a Cartesian category. (Symmetric monoidal works too.)

- A *monad-comonad interaction law* is given by a monad (T, η, μ) and a comonad (D, ε, δ) and a nat. transf. ψ typed

 $$\psi_{X,Y} : TX \times DY \to X \times Y$$

 such that

 $\xymatrix{ X \times Y \ar[r]^{id \times \varepsilon_Y} & X \times Y \ar@{=}[r] & X \times Y \ar[r]^{\eta_X \times id} & TX \times DY \ar[r]^{\psi_{X,Y}} & X \times Y \ar[r]^{id \times \delta_Y} & TTX \times DDY \ar[r]^{\psi_{TX,DY}} & TX \times DY \ar[r]^{\psi_{X,Y}} & X \times Y}$

- Legend:
 - X – values, TX – computations
 - Y – states, DY – environments (incl an initial state)
Reader monads

- $TX = S \Rightarrow X$ (the reader monad),
 $DY = S_0 \times Y$ (the coreader comonad)
 for some S_0, S and $c : S_0 \to S$

- $\psi(f, (s_0, y)) = (f(c \cdot s_0), y)$

Legend:
- X – values, S – “views” of stores (data states),
- Y – (control) states, S_0 – stores (data states)
State monads

- \(TX = S \Rightarrow (S \times X) \) (the state monad),
- \(DY = S_0 \times (S_0 \Rightarrow Y) \) (the costate comonad)

for some \(S_0, S, c : S_0 \to S \) and \(d : S_0 \times S \to S_0 \)
forming a \((\text{very well-behaved}) \) lens

- \(\psi(f, (s_0, g)) = \text{let } (s', x) = f(c s_0) \text{ in } (x, g(d(s_0, s'))) \)

Legend:
- \(X \) – values, \(S \) – “views” of stores (data states),
- \(Y \) – (control) states, \(S_0 \) – stores (data states)
Free functor-algebras monads (free monads)

- Free monad for intensional nondeterminism:
 \[TX = \mu Z. X + Z \times Z, \]
 \[DY = \nu W. Y \times (W + W) \]
 \[\psi_{X,Y} : TX \times DY \rightarrow X \times Y \]
 \[\psi (\text{in} (\text{inl} \ x), e) = (x, \text{fst} (\text{out} e)) \]
 \[\psi (\text{in} (\text{inr} (c_0, c_1)), e) = \text{case } \text{snd} (\text{out} e) \text{ of } \begin{cases} \text{inl } e' \mapsto \psi (c_0, e') \\ \text{inr } e' \mapsto \psi (c_1, e') \end{cases} \]

- Free monad for intensional store manipulation:
 \[TX = \mu Z. X + (S \Rightarrow Z) + (S \times Z), \]
 \[DY = \nu W. Y \times (S \times W) \times (S \Rightarrow W) \]
 \[\psi_{X,Y} : TX \times DY \rightarrow X \times Y \]
 \[\psi (\text{in} (\text{inl} \ x), e) = (x, \text{fst} (\text{out} e)) \]
 \[\psi (\text{in} (\text{inr} (\text{inl} f)), e) = \text{let } (s, e') = \text{fst} (\text{snd} (\text{out} e)) \text{ in } \psi (f s, e') \]
 \[\psi (\text{in} (\text{inr} (\text{inr} (s, c))), e) = \psi (c, \text{snd} (\text{snd} (\text{out} e)) s) \]
Monad-comonad interaction laws are monoids

- A functor-functor interaction law is given by two functors $F, G : C \to C$ and a family of maps $\phi_{X,Y} : FX \times GY \to X \times Y$ natural in X, Y.

- A functor-functor interaction law map between $(F, G, \phi), (F', G', \phi')$ is given by nat. transfs. $f : F \to F', g : G' \to G$ such that

 $\phi_{X,Y} : FX \times GY \to X \times Y$

 $id \times g_Y : FX \times GY \to FX \times G'Y$

 $f_X \times id : F'X \times G'Y \to FX \times G'Y$

 $\phi'_{X,Y} : F'X \times G'Y \to X \times Y$

- Functor-functor interaction laws form a category with a composition-based monoidal structure.

- These categories are isomorphic:
 - monad-comonad interaction laws;
 - monoid objects of the category of functor-functor interaction laws.
Some degeneracy thms for func-func int laws

- Assume C is extensive (“has well-behaved coproducts”).
- If F has a nullary operation, i.e., a family of maps
 \[c_X : 1 \to FX \]
 natural in X (eg, $F = \text{Maybe}$)
 or a binary commutative operation, i.e., a family of maps
 \[c_X : X \times X \to FX \]
 natural in X such that
 \[
 \begin{array}{ccc}
 X \times X & \xrightarrow{c_X} & FX \\
 \text{sym} \downarrow & & \downarrow \\
 X \times X & \xrightarrow{c_X} & FX
 \end{array}
 \]
 (eg, $F = \mathcal{M}^+_{\text{fin}}$) and F interacts with G, then $GY \cong 0$.

A degeneracy thm for mnd-cmnd int laws

- If T has a binary associative operation, ie a family of maps $c_X : X \times X \to TX$ natural in X such that

$$
\begin{align*}
(X \times X) \times X & \xrightarrow{\text{ass}} X \times (X \times X) \\
& \xrightarrow{\ell_X} TX \\
& \xrightarrow{r_X} TX
\end{align*}
$$

where

$$
\ell_X = (X \times X) \times X \xrightarrow{c_X \times \eta_X} TX \times TX \xrightarrow{c_{TX}} TTX \xrightarrow{\mu_X} TX
$$

$$
r_X = X \times (X \times X) \xrightarrow{\eta_X \times c_X} TX \times TX \xrightarrow{c_{TX}} TTX \xrightarrow{\mu_X} TX
$$

(eg, $T = \text{List}^+$), then any int law ψ of T and D obeys

$$
\begin{align*}
(X \times X) \times X \times DY & \xrightarrow{\ell_X \times \text{id}} TX \times DY \\
& \xrightarrow{\psi_{X,Y}} X \times Y \\
& \xrightarrow{\psi_{X,Y}} X \times Y
\end{align*}
$$
Residual interaction laws

- Given a monad \((R, \eta^R, \mu^R)\) on \(\mathcal{C}\).
- Eg, \(R = \text{Maybe}, \mathcal{M}^+\) or \(\mathcal{M}\).

A *residual functor-functor interaction law* is given by two functors \(F, G : \mathcal{C} \to \mathcal{C}\) and a family of maps

\[
\phi_{X,Y} : FX \times GY \to R(X \times Y)
\]

natural in \(X, Y\).
Residual interaction laws ctd

- A residual monad-comonad interaction law is given by a monad \((T, \eta, \mu)\), a comonad \((D, \varepsilon, \delta)\) and a family of maps

 \[\psi_{X,Y} : TX \times DY \to R(X \times Y) \]

 natural in \(X, Y\) such that

\[\begin{align*}
 \text{id} \times \varepsilon_Y & : X \times Y \to X \times Y \\
 \eta^{R_{X \times Y}} & : T \times D_Y \to R(T \times D_Y) \\
 \eta^{X \times \text{id}} & : TX \times DY \to R(X \times Y) \\
 \psi_{X,Y} & : TX \times DY \to R(X \times Y) \\
 \mu^{R_{X \times Y}} & : R(T \times D_Y) \to RR(X \times Y)
\end{align*} \]

\[\begin{align*}
 \text{id} \times \delta_Y & : T \times D_Y \to R(T \times D_Y) \\
 \mu^{X \times \text{id}} & : TX \times DY \to R(X \times Y) \\
 \psi_{X,Y} & : TX \times DY \to R(X \times Y)
\end{align*} \]

- \(R\)-residual functor-functor interaction laws form a monoidal category with \(R\)-residual monad-comonad interaction laws as monoids.
Duals
Duals

Given a functor/monad/comonad, is there a “greatest” functor/comonad/monad interacting with it?

\[TX \times DY \rightarrow X \times Y \]

The same question makes sense in the presence of a residual monad \(R \).
Dual of a functor

- Assume again that \mathcal{C} is Cartesian closed (or symm monoidal closed).
- For a functor $G : \mathcal{C} \to \mathcal{C}$, its *dual* is the functor $G^\circ : \mathcal{C} \to \mathcal{C}$ is
 \[G^\circ X = \int_Y G Y \Rightarrow (X \times Y) \]
 (if this end exists).

- $(-)^\circ$ is a functor $[C, C]^{op} \to [C, C]$
 (if all functors $C \to C$ are dualizable; if not, restrict to some full subcategory of $[C, C]$ closed under dualization).

- $G^\circ = G \ast \text{Id}$ where $G \ast (-)$ is the right adjoint of $(-) \ast G$ and $F \ast G$ is the Day convolution of F and G.
Dual of a functor ctd

- The dual G° is the “greatest” functor interacting with G.

- These categories are isomorphic:
 - functor-functor interaction laws;
 - pairs of functors F, G with nat. transfs. $F \rightarrow G^\circ$;
 - pairs of functors F, G with nat. transfs. $G \rightarrow F^\circ$.

\[
\begin{align*}
FX \times GY &\rightarrow X \times Y \text{ nat in } X, Y \\
FX &\rightarrow \int_Y GY \Rightarrow (X \times Y) \text{ nat in } X \\
&\quad \underbrace{G^\circ X}
\end{align*}
\]

\[
\begin{align*}
FX \times GY &\rightarrow X \times Y \\
G^\circ X \times GY &\rightarrow \quad F \rightarrow G^\circ
\end{align*}
\]
Some examples of dual

- For $GY = 0$, we have $G^\circ X \cong 1$
 and, for $GY = G_0 Y + G_1 Y$, we have $G^\circ X \cong G_0^\circ X \times G_1^\circ X$.

- For $GY = 1$, we have $G^\circ X \cong 0$.
- For $GY = A \times G' Y$, we have $G^\circ X \cong A \Rightarrow G'^\circ X$.

- For $GY = A \Rightarrow Y$, we have $G^\circ X \cong A \times X$.
- For $GY = A \Rightarrow G' Y$, we only have $G^\circ X \leftarrow A \times G'^\circ X$.

- $\text{Id}^\circ \cong \text{Id}$.

- But we only have $(G_0 \cdot G_1)^\circ \leftarrow G_0^\circ \cdot G_1^\circ$.

- For any G with a nullary or a binary commutative operation, we have $G^\circ X \cong 0$.
Dual of a comonad / Sweedler dual a monad

- The dual D° of a comonad D is a monad.
- This is because $(-)^\circ : [C, C]^{op} \to [C, C]$ is lax monoidal, so send monoids to monoids.

- But $(-)^\circ$ is not oplax monoidal, does not send comonoids to comonoids.
- So the dual T° of a monad T is generally not a comonad.

- However we can talk about the _Sweedler dual_ T^\bullet of T.
- Informally, it is defined as the greatest functor D that is smaller than the functor T° and carries a comonad structure η^\bullet, μ^\bullet agreeing with η°, μ°.
Formally, the *Sweedler dual* of the monad \(T \) is the comonad \((T^\bullet, \eta^\bullet, \mu^\bullet)\) together with a natural transformation \(\iota : T^\bullet \to T^\circ \) such that

\[
\begin{align*}
\text{Id} & \xrightarrow{e} \text{Id}^\circ \\
\eta^\bullet & \xrightarrow{e^{-1}} \eta^\circ \\
T^\bullet & \xrightarrow{\iota} T^\circ \\
\end{align*}
\]

and such that, for any comonad \((D, \varepsilon, \delta)\) together with a natural transformation \(\psi \) satisfying the same conditions, there is a unique comonad map \(h : D \to T^\bullet \) satisfying

\[
\begin{align*}
\text{Id} & \xrightarrow{e} \text{Id}^\circ \\
\eta^\bullet & \xrightarrow{e^{-1}} \eta^\circ \\
T^\bullet & \xrightarrow{\iota} T^\circ \\
\end{align*}
\]
Some examples of dual and Sweedler dual

- Let $TX = \text{List}^+ X \cong \Sigma n : \mathbb{N} \cdot ([0..n] \Rightarrow X)$ (the nonempty list monad).

- We have $T^\circ Y \cong \prod n : \mathbb{N} \cdot ([0..n] \times Y)$ but $T^\bullet Y \cong Y \times (Y + Y)$.

- Let $TX = S \Rightarrow (S \times X) \cong (S \Rightarrow S) \times (S \Rightarrow X)$ (the state monad).

- We have $T^\circ Y = (S \Rightarrow S) \Rightarrow (S \times Y)$ but $T^\bullet Y = S \times (S \Rightarrow Y)$.
An algebraic-coalgebraic perspective
Stafeful runners

- Given
 - a resid mnd-cmnd int law, i.e., nat transf typed $\psi_{X,Y} : TX \times DY \to R(X \times Y)$ subject to eqns
 - a coEM coalgebra $(Y, \chi : Y \to DY)$ of D (a “cohandler”)

we get

- a nat transf typed $\theta_X : TX \times Y \to R(X \times Y)$ subject to other eqns (a resid stateful runner)

by

$$
\theta_X = \begin{array}{c}
TX \times Y \\
\xrightarrow{TX \times \chi} \\
TX \times DY \\
\xrightarrow{\psi_{X,Y}} \\
R(X \times Y)
\end{array}
$$

Where do these constructions with EM (co)algebras come from?
Alternative definitions

- If \(C \) is Cartesian closed (or symmetric monoidal closed), \(R \)-resid mnd-cmnd int laws of \(T, D \) can be defined in multiple ways:

\[
\begin{align*}
TX \times DY &\to R(X \times Y) \text{ nat in } X, Y \text{ subj to eqs} \\
C(X \times Y, Z) &\to C(TX \times DY, RZ) \text{ nat in } X, Y, Z \text{ subj to eqs} \\
T(Y \Rightarrow Z) &\to DY \Rightarrow RZ \text{ nat in } Y, Z \text{ subj to eqs} \\
D(X \Rightarrow Z) &\to TX \Rightarrow RZ \text{ nat in } X, Z \text{ subj to eqs}
\end{align*}
\]

(Yoneda again!)

(A symm monoidal closed category will also do.)

- Legend:

 - \(X \) – values
 - \(Y \) – states
 - \(Z \) – observables
 - (values for residual computations)
 - \(X \times Y \to Z \) – observation functions
A (co)algebraic view

- Resid mnd-cmnd int laws are in a bijection with coalgebra-algebra exponentiation functors:

\[T(Y \Rightarrow Z) \rightarrow DY \Rightarrow RZ \text{ nat in } Y, Z \text{ subj to eqs} \]

\[
\begin{array}{c}
\text{(coEM(D))}^{\text{op}} \times \text{EM(R)} \longrightarrow \text{EM(T)} \\
\downarrow U^{\text{op}} \times U \\
C^{\text{op}} \times C \Rightarrow C \\
\end{array}
\]

\[
(Y, \chi : Y \to DY), (Z, \zeta : RZ \to Z) \mapsto (Y \Rightarrow Z, T(Y \Rightarrow Z) \to (Y \Rightarrow Z))
\]

\[
\begin{array}{c}
\text{(coKI(D))}^{\text{op}} \times \text{KI(R)} \longrightarrow \text{EM(T)} \\
\downarrow L^{D^{\text{op}}} \times R^T \\
C^{\text{op}} \times C \Rightarrow C \\
\end{array}
\]
A (co)algebraic view ctd

- Explicitly, given a resid mnd-cmnd int law ψ, the corresponding (co)alg exp functor E sends an EM-coalgebra (Y, χ) of D and an EM-algebra (Z, ζ) of R to the EM-algebra $(Y \Rightarrow Z, \xi)$ of T where

$$
\xi = T(Y \Rightarrow Z) \xrightarrow{T(\varepsilon_Y \Rightarrow \eta^R_Z)} DY \Rightarrow RZ \xrightarrow{\chi \Rightarrow \zeta} Y \Rightarrow Z
$$

- Conversely, given a (co)alg exp functor E, the corresponding resid mnd-cmnd int law is

$$
\psi_{Y,Z} = T(Y \Rightarrow Z) \xrightarrow{T(\varepsilon_Y \Rightarrow \eta^R_Z)} T(DY \Rightarrow RZ) \xrightarrow{e_Y, Z} DY \Rightarrow RZ
$$

where $(DY \Rightarrow RZ, e_Y, Z) = E((DY, \delta_Y), (RZ, \mu^R_Z))$.
Intermediate views

- In fact the picture is finer, there are also two intermediate bijections:

\[
\begin{align*}
\text{MCIL}_R(T, D) & \cong \left[(\text{coEM}(D))^{\text{op}}, (\text{SRun}_R(T))^{\text{op}} \right]_{\text{cp}} \cong \left[\text{EM}(R), \text{CRun}_D(T) \right]_{\text{cp}} \\
& \cong \left[(\text{coEM}(D)^{\text{op}} \times \text{EM}(R), \text{EM}(T)) \right]_{\text{ce}}
\end{align*}
\]

where

- \(\text{SRun}_R(T)\) - \(R\)-residual stateful runners of \(T\)
- \(\text{CRun}_D(T)\) - \(D\)-fuelled continuation-based runners of \(T\)
Stateful runners

- For any \(Y \), we have

 \[
 R\text{-residual stateful runners of } T \text{ w/ carrier } Y, \text{ ie } \quad TX \times Y \to R(X \times Y) \text{ nat in } X \text{ subj to eqs}
 \]

 \[
 \text{monad morphisms from } T \text{ to } St^R_Y, \text{ ie } \quad TX \to Y \Rightarrow R(X \times Y) \text{ nat in } X \text{ subj to eqs}
 \]

\[
\begin{array}{ccc}
\text{EM}(R) & \longrightarrow & \text{EM}(T) \\
\uparrow U & & \downarrow U \\
C & \stackrel{Y \Rightarrow (-)}{\longrightarrow} & C
\end{array}
\]

where \(St^R_Y \) is the \(R\text{-transformed state monad} \) for state object \(Y \) given by

\[
St^R_Y X = Y \Rightarrow R(X \times Y)
\]
Continuation-based runners

- For any Z, we have

\[
D\text{-fuelled continuation-based runners of } T \text{ w/ carrier } Z, \text{ ie } \\
D(X \Rightarrow Z) \rightarrow TX \Rightarrow Z \text{ nat in } X \text{ subj to eqs} \\
\text{monad morphisms from } T \text{ to } \text{Cnt}^D_Z, \text{ ie } \\
TX \rightarrow D(X \Rightarrow Z) \Rightarrow Z \text{ nat in } X \text{ subj to eqs} \\
(\text{coEM}(D))^{\text{op}} \longrightarrow \text{EM}(T) \\
\text{where } \text{Cnt}^D_Z \text{ is the } D\text{-transformed continuation monad} \text{ for answer object } Z \text{ given by} \\
\text{Cnt}^D_Z X = D(X \Rightarrow Z) \Rightarrow Z
\]
EM algebras of T w/ carrier $Y \Rightarrow Z$ as runners

- For any Y, Z, we have

 state and continuation based runners of T w/ carrier Z, ie

 \[C(X \times Y, Z) \rightarrow C(TX \times Y, Z) \] nat in X subj to eqs

 monad morphisms from T to $xCntSt_{Y,Z} \cong xCostCnt_{Y,Z}$, ie

 \[TX \rightarrow Y \Rightarrow xCnt_Z(X \times Y) \]

 \[\cong xCost_Y(X \Rightarrow Z) \Rightarrow Z \] nat in X subj to eqs

 EM algebras of T with carrier $Y \Rightarrow Z$

where

\[
\begin{align*}
 xCnt_Z X &= C(X, Z) \triangleleft Z \\
 xCntSt_{Y,Z} X &= Y \Rightarrow xCnt_Z(X \times Y) \\
 &= Y \Rightarrow (C(X \times Y, Z) \triangleleft Z) \\
 xCost_Y X &= C(Y, X) \bullet Y \\
 xCostCnt_{Y,Z} X &= xCost_Y(X \Rightarrow Z) \Rightarrow Z \\
 &= (C(Y, X \Rightarrow Z) \bullet Y) \Rightarrow Z
\end{align*}
\]
Monoid-comonoid interaction laws
Residual interaction laws and Chu spaces

- The *Day convolution* of F, G is

$$ (F \star G)Z = \int^{X, Y} C(X \times Y, Z) \bullet (FX \times GY) $$

(if this coend exists).

- These categories are isomorphic for a given monad R:
 - R-residual functor-functor interaction laws;
 - Chu spaces on the symm monoidal category $([C, C], J, \ast)$ with vertex R, i.e., triples of two functors F, G with a nat transf $F \star G \to R$.

(if \ast is defined for all functors).

\[
\begin{align*}
FX \times GY & \to R(X \times Y) \text{ nat in } X, Y \\
C(X \times Y, Z) & \to C(FX \times GY, RZ) \text{ nat in } X, Y, Z \\
\int^{X, Y} C(X \times Y, Z) \bullet (FX \times GY) & \to RZ \text{ nat in } Z \\
(F \star G)Z & \\
\end{align*}
\]
We do not immediately get another characterization of the category of R-residual monad-comonad interaction laws.

We have to use that $[C, C]$ has a *duoidal* structure $(\text{Id}, \cdot, J, \star)$.

In particular, \star is oplax monoidal wrt (Id, \cdot), so there are structural laws

$$\text{Id} \star \text{Id} \rightarrow \text{Id}$$

$$(F \cdot F') \star (G \cdot G') \rightarrow (F \star G) \cdot (F' \star G')$$

with the requisite properties.

This duoidal structure induces a monoidal structure on $\text{Chu}(R)$ based on (Id, \cdot).

R-residual monad-comonad interaction laws are monoid objects of $\text{Chu}(R)$ wrt this monoidal structure.
General residual interaction laws

- Instead of an endofunctor category, one can consider any duoidal category \((\mathcal{D}, I, \diamond, J, \ast)\).
- Given a monoid object \((R, \eta^R, \mu^R)\) wrt. \((I, \diamond)\), we get a \((I, \diamond)\)-based monoidal structure on \(\text{Chu}(R)\).
- An \(R\)-residual monoid-comonoid interaction law is a monoid object of \(\text{Chu}(R)\).
- Explicitly, it is given by a monoid \((T, \eta, \mu)\), a comonoid \((D, \varepsilon, \delta)\) and a map \(\psi : T \star D \to R\) such that

\[
\begin{align*}
\text{Id} \times \varepsilon : I \times I & \to I \\
\eta^R & \downarrow \\
I \times D & \to T \star D \to R \\
\eta \times \text{Id} & \downarrow \psi \\
T \star D & \to R \\
(T \diamond T) \times (D \diamond D) & \to (T \star D) \diamond (T \star D) \\
\text{Id} \times \delta & \downarrow \\
(T \diamond T) \times D & \to (T \star D) \diamond D \\
\mu \times \text{Id} & \downarrow \psi \\
\mu \times \text{Id} & \downarrow \\
T \star D & \to R \\
\psi \diamond \psi & \downarrow \\
R \diamond R & \to R \\
\mu^R & \downarrow \\
R \diamond R & \to R
\end{align*}
\]